JSPM

@meshailabs/sdk

0.3.0
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 99
  • Score
    100M100P100Q67065F
  • License MIT

MeshAI SDK for JavaScript/TypeScript - Universal AI Agent Orchestration with Memory

Package Exports

  • @meshailabs/sdk
  • @meshailabs/sdk/dist/index.js
  • @meshailabs/sdk/dist/index.mjs

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@meshailabs/sdk) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

MeshAI SDK for JavaScript/TypeScript

npm version TypeScript License: MIT

Universal AI Agent Orchestration Platform

MeshAI SDK enables seamless communication and orchestration between AI agents built on different frameworks. Connect agents from OpenAI, Anthropic, Google, LangChain, CrewAI, and more in a unified platform.

Features

  • Cross-Framework Communication - Agents from different platforms work together seamlessly
  • Intelligent Routing - Advanced strategies for optimal agent selection
  • Agent Instructions - Define comprehensive behavioral guidelines and guardrails
  • Context Preservation - Maintain conversation context across agents
  • Real-time Monitoring - WebSocket support for live task updates
  • TypeScript Support - Full type safety and IntelliSense
  • Production Ready - Built-in error handling, retries, and circuit breakers

Installation

npm install @meshailabs/sdk
# or
yarn add @meshailabs/sdk
# or
pnpm add @meshailabs/sdk

Quick Start

Basic Setup

Set your MeshAI API key:

export MESHAI_API_KEY="your-api-key"

Simple Task Execution

import { MeshClient } from '@meshailabs/sdk';

// Create client
const client = await MeshClient.createAndInitialize();

// Execute a task
const result = await client.quickExecute(
  'Analyze the sentiment of this text: I love using MeshAI!',
  ['sentiment-analysis']
);

console.log('Result:', result.result);

Advanced Usage

import { MeshClient, RoutingStrategy, TaskStatus } from '@meshailabs/sdk';

const client = new MeshClient({
  apiKey: process.env.MESHAI_API_KEY,
  defaultRoutingStrategy: RoutingStrategy.PERFORMANCE_BASED,
  timeout: 30000,
  maxRetries: 3
});

// Initialize the client
await client.initialize();

// Create a task with specific routing
const task = client.createTask(
  { prompt: 'Generate a business plan for a tech startup' },
  {
    taskType: 'generation',
    requiredCapabilities: ['business-planning', 'strategic-thinking'],
    routingStrategy: RoutingStrategy.CAPABILITY_MATCH,
    preserveContext: true,
    conversationId: 'session-123'
  }
);

// Execute with real-time updates
const result = await client.execute(task, {
  async: true,
  onProgress: (status, details) => {
    console.log(`Task status: ${status}`, details);
  },
  callback: (finalResult) => {
    console.log('Task completed:', finalResult);
  }
});

Agent Discovery

// Discover agents by capabilities
const agents = await client.discoverAgents({
  requiredCapabilities: ['code-generation', 'debugging'],
  preferredFramework: 'langchain',
  limit: 5
});

agents.forEach(agent => {
  console.log(`Agent: ${agent.name} (${agent.framework})`);
  console.log(`Capabilities: ${agent.capabilities?.join(', ')}`);
});

Agent Instructions

Define comprehensive behavioral guidelines for agents:

// Register agent with instructions
const agent = await client.registerAgent({
  id: 'assistant-001',
  name: 'Customer Assistant',
  framework: 'openai',
  capabilities: ['customer-support', 'problem-solving'],
  endpoint: 'https://api.openai.com/v1/chat/completions',

  // Define agent behavior
  instructions: {
    guidelines: [
      'Be professional and empathetic',
      'Provide clear, actionable solutions',
      'Follow company policies strictly'
    ],
    taskBoundaries: [
      'DO provide product support',
      'DO NOT share customer data',
      'DO NOT make unauthorized promises'
    ],
    outputFormat: 'Structured response with: Problem, Solution, Next Steps',
    guardrails: [
      'Verify customer identity before account changes',
      'Escalate complex technical issues'
    ]
  }
});

// Override instructions for specific tasks
const result = await client.execute({
  taskType: 'urgent_support',
  input: 'Customer complaint about service',
  instructions: {
    taskGuidelines: ['Prioritize immediate resolution'],
    constraints: ['Response within 2 minutes']
  }
});

Context Management

// Maintain conversation context
const conversationId = 'conv-' + Date.now();

// First task
const task1 = await client.execute(
  client.createTask('What is quantum computing?', {
    preserveContext: true,
    conversationId
  })
);

// Follow-up task with context
const task2 = await client.execute(
  client.createTask('How does it differ from classical computing?', {
    preserveContext: true,
    conversationId
  })
);

// Get full conversation history
const history = await client.getTaskHistory(conversationId);

Routing Strategies

Strategy Description Use Case
ROUND_ROBIN Distribute tasks evenly Load balancing
CAPABILITY_MATCH Match agent capabilities Specialized tasks
LEAST_LOADED Route to least busy agent Performance optimization
PERFORMANCE_BASED Choose best performing Quality-critical tasks
STICKY_SESSION Keep same agent Context preservation
COST_OPTIMIZED Most cost-effective Budget management
GEOGRAPHIC Geographic proximity Latency optimization

Configuration

const client = new MeshClient({
  // Authentication
  apiKey: 'your-api-key',
  
  // Service URLs (optional - defaults to MeshAI cloud)
  registryUrl: 'https://api.meshai.dev/registry',
  runtimeUrl: 'https://api.meshai.dev/runtime',
  
  // Performance
  timeout: 30000,              // 30 seconds
  maxRetries: 3,
  maxConcurrentTasks: 100,
  
  // Circuit breaker
  circuitBreakerEnabled: true,
  circuitBreakerThreshold: 5,
  
  // Monitoring
  metricsEnabled: true,
  logLevel: 'info'
});

Error Handling

import { 
  MeshError, 
  AuthenticationError, 
  TaskExecutionError,
  TimeoutError 
} from '@meshailabs/sdk';

try {
  const result = await client.execute(task);
} catch (error) {
  if (error instanceof AuthenticationError) {
    console.error('Invalid API key');
  } else if (error instanceof TaskExecutionError) {
    console.error('Task failed:', error.taskId, error.message);
  } else if (error instanceof TimeoutError) {
    console.error('Task timed out');
  } else {
    console.error('Unknown error:', error);
  }
}

TypeScript Support

The SDK is written in TypeScript and provides full type definitions:

import {
  MeshClient,
  TaskData,
  TaskResult,
  AgentInfo,
  AgentRegistration,
  RoutingStrategy,
  TaskStatus,
  AgentStatus
} from '@meshailabs/sdk';

// All types are fully typed
const task: TaskData = {
  taskType: 'analysis',
  input: { data: 'sample' },
  requiredCapabilities: ['analysis'],
  routingStrategy: RoutingStrategy.CAPABILITY_MATCH,
  // New: Task-specific instructions
  instructions: {
    taskGuidelines: ['Focus on key insights'],
    outputRequirements: 'JSON format with findings array'
  }
};

// Agent with instructions
const agent: AgentRegistration = {
  id: 'agent-001',
  name: 'Analysis Agent',
  framework: 'langchain',
  capabilities: ['analysis'],
  endpoint: 'https://api.example.com',
  instructions: {
    guidelines: ['Provide data-driven insights'],
    guardrails: ['No PII in outputs']
  }
};

const result: TaskResult = await client.execute(task);

API Reference

MeshClient

Main client for interacting with MeshAI:

  • initialize() - Initialize the client
  • execute(task, options?) - Execute a task
  • executeWithAgent(agentId, task, options?) - Execute with specific agent
  • discoverAgents(query) - Find agents by capabilities
  • getAgent(agentId) - Get agent details
  • listAgents(limit?, offset?) - List all agents
  • quickExecute(input, capabilities?) - Simplified task execution

RegistryClient

Agent management operations:

  • registerAgent(registration) - Register new agent
  • updateAgent(agentId, updates) - Update agent info
  • deregisterAgent(agentId) - Remove agent
  • checkAgentHealth(agentId) - Health check
  • getAgentMetrics(agentId) - Performance metrics

RuntimeClient

Task execution operations:

  • execute(task, options?) - Execute task
  • executeBatch(tasks) - Execute multiple tasks
  • getTaskStatus(taskId) - Check task status
  • cancelTask(taskId) - Cancel running task
  • retryTask(taskId) - Retry failed task

MemoryClient

Persistent memory and learning capabilities:

  • healthCheck() - Check Memory Service health
  • storeEpisodic(memory) - Store complete task interaction
  • getEpisodic(memoryId) - Retrieve specific memory
  • listEpisodic(filters) - List memories with filters
  • searchSemantic(query) - Vector similarity search
  • getStats(filters?) - Memory statistics
  • generateSummary(agentId, hours) - Generate summary memory
  • getSummary(agentId, hours) - Retrieve summary
  • listProcedures(agentId, limit) - List learned patterns
  • getProcedure(procedureId) - Get procedure details
  • reflect(agentId, type, hours, areas?) - Perform self-evaluation
  • getReflection(agentId, type) - Retrieve reflection

Memory Client Example

import { MeshConfig, MemoryClient } from '@meshailabs/sdk';

const config = new MeshConfig({ apiKey: process.env.MESHAI_API_KEY });
const memory = new MemoryClient(config);

// Store episodic memory
await memory.storeEpisodic({
  agentId: 'agent-001',
  sessionId: 'session-123',
  interactionType: 'customer_query',
  inputData: { query: 'How do I reset my password?' },
  outputData: { response: 'Go to Settings > Security' },
  success: true,
  durationMs: 1250,
  tokensUsed: 150,
  tags: ['password', 'security']
});

// Semantic search for similar past interactions
const results = await memory.searchSemantic({
  agentId: 'agent-001',
  queryText: 'I forgot my login credentials',
  topK: 5,
  minSimilarity: 0.7
});

// Get memory statistics
const stats = await memory.getStats({ agentId: 'agent-001' });
console.log(`Total memories: ${stats.totalMemories}`);
console.log(`Success rate: ${(stats.successRate * 100).toFixed(1)}%`);

// Agent self-reflection
const reflection = await memory.reflect(
  'agent-001',
  'performance_analysis',
  168, // last week
  ['accuracy', 'response_time']
);
console.log('Insights:', reflection.insights);

For complete examples, see examples/memory-client.ts.

Examples

Basic Example

import { MeshClient } from '@meshailabs/sdk';

async function main() {
  const client = await MeshClient.createAndInitialize();
  
  const result = await client.quickExecute(
    'Translate "Hello World" to Spanish'
  );
  
  console.log(result.result);
  client.disconnect();
}

main().catch(console.error);

WebSocket Monitoring

const result = await client.execute(task, {
  async: true,
  onProgress: (status, details) => {
    console.log(`Status: ${status}`);
    if (details) {
      console.log('Details:', details);
    }
  },
  callback: (result) => {
    if (result.status === TaskStatus.COMPLETED) {
      console.log('Success:', result.result);
    } else if (result.status === TaskStatus.FAILED) {
      console.error('Failed:', result.error);
    }
  }
});

Support

License

MIT License - see LICENSE file for details

Contributing

Contributions are welcome! Please read our Contributing Guide for details.