JSPM

@meshailabs/sdk

0.2.0
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 10
  • Score
    100M100P100Q69279F
  • License MIT

MeshAI SDK for JavaScript/TypeScript - Universal AI Agent Orchestration

Package Exports

    This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@meshailabs/sdk) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

    Readme

    MeshAI SDK for JavaScript/TypeScript

    npm version TypeScript License: MIT

    Universal AI Agent Orchestration Platform

    MeshAI SDK enables seamless communication and orchestration between AI agents built on different frameworks. Connect agents from OpenAI, Anthropic, Google, LangChain, CrewAI, and more in a unified platform.

    Features

    • Cross-Framework Communication - Agents from different platforms work together seamlessly
    • Intelligent Routing - Advanced strategies for optimal agent selection
    • Agent Instructions - Define comprehensive behavioral guidelines and guardrails
    • Context Preservation - Maintain conversation context across agents
    • Real-time Monitoring - WebSocket support for live task updates
    • TypeScript Support - Full type safety and IntelliSense
    • Production Ready - Built-in error handling, retries, and circuit breakers

    Installation

    npm install @meshailabs/sdk
    # or
    yarn add @meshailabs/sdk
    # or
    pnpm add @meshailabs/sdk

    Quick Start

    Basic Setup

    Set your MeshAI API key:

    export MESHAI_API_KEY="your-api-key"

    Simple Task Execution

    import { MeshClient } from '@meshailabs/sdk';
    
    // Create client
    const client = await MeshClient.createAndInitialize();
    
    // Execute a task
    const result = await client.quickExecute(
      'Analyze the sentiment of this text: I love using MeshAI!',
      ['sentiment-analysis']
    );
    
    console.log('Result:', result.result);

    Advanced Usage

    import { MeshClient, RoutingStrategy, TaskStatus } from '@meshailabs/sdk';
    
    const client = new MeshClient({
      apiKey: process.env.MESHAI_API_KEY,
      defaultRoutingStrategy: RoutingStrategy.PERFORMANCE_BASED,
      timeout: 30000,
      maxRetries: 3
    });
    
    // Initialize the client
    await client.initialize();
    
    // Create a task with specific routing
    const task = client.createTask(
      { prompt: 'Generate a business plan for a tech startup' },
      {
        taskType: 'generation',
        requiredCapabilities: ['business-planning', 'strategic-thinking'],
        routingStrategy: RoutingStrategy.CAPABILITY_MATCH,
        preserveContext: true,
        conversationId: 'session-123'
      }
    );
    
    // Execute with real-time updates
    const result = await client.execute(task, {
      async: true,
      onProgress: (status, details) => {
        console.log(`Task status: ${status}`, details);
      },
      callback: (finalResult) => {
        console.log('Task completed:', finalResult);
      }
    });

    Agent Discovery

    // Discover agents by capabilities
    const agents = await client.discoverAgents({
      requiredCapabilities: ['code-generation', 'debugging'],
      preferredFramework: 'langchain',
      limit: 5
    });
    
    agents.forEach(agent => {
      console.log(`Agent: ${agent.name} (${agent.framework})`);
      console.log(`Capabilities: ${agent.capabilities?.join(', ')}`);
    });

    Agent Instructions

    Define comprehensive behavioral guidelines for agents:

    // Register agent with instructions
    const agent = await client.registerAgent({
      id: 'assistant-001',
      name: 'Customer Assistant',
      framework: 'openai',
      capabilities: ['customer-support', 'problem-solving'],
      endpoint: 'https://api.openai.com/v1/chat/completions',
    
      // Define agent behavior
      instructions: {
        guidelines: [
          'Be professional and empathetic',
          'Provide clear, actionable solutions',
          'Follow company policies strictly'
        ],
        taskBoundaries: [
          'DO provide product support',
          'DO NOT share customer data',
          'DO NOT make unauthorized promises'
        ],
        outputFormat: 'Structured response with: Problem, Solution, Next Steps',
        guardrails: [
          'Verify customer identity before account changes',
          'Escalate complex technical issues'
        ]
      }
    });
    
    // Override instructions for specific tasks
    const result = await client.execute({
      taskType: 'urgent_support',
      input: 'Customer complaint about service',
      instructions: {
        taskGuidelines: ['Prioritize immediate resolution'],
        constraints: ['Response within 2 minutes']
      }
    });

    Context Management

    // Maintain conversation context
    const conversationId = 'conv-' + Date.now();
    
    // First task
    const task1 = await client.execute(
      client.createTask('What is quantum computing?', {
        preserveContext: true,
        conversationId
      })
    );
    
    // Follow-up task with context
    const task2 = await client.execute(
      client.createTask('How does it differ from classical computing?', {
        preserveContext: true,
        conversationId
      })
    );
    
    // Get full conversation history
    const history = await client.getTaskHistory(conversationId);

    Routing Strategies

    Strategy Description Use Case
    ROUND_ROBIN Distribute tasks evenly Load balancing
    CAPABILITY_MATCH Match agent capabilities Specialized tasks
    LEAST_LOADED Route to least busy agent Performance optimization
    PERFORMANCE_BASED Choose best performing Quality-critical tasks
    STICKY_SESSION Keep same agent Context preservation
    COST_OPTIMIZED Most cost-effective Budget management
    GEOGRAPHIC Geographic proximity Latency optimization

    Configuration

    const client = new MeshClient({
      // Authentication
      apiKey: 'your-api-key',
      
      // Service URLs (optional - defaults to MeshAI cloud)
      registryUrl: 'https://api.meshai.dev/registry',
      runtimeUrl: 'https://api.meshai.dev/runtime',
      
      // Performance
      timeout: 30000,              // 30 seconds
      maxRetries: 3,
      maxConcurrentTasks: 100,
      
      // Circuit breaker
      circuitBreakerEnabled: true,
      circuitBreakerThreshold: 5,
      
      // Monitoring
      metricsEnabled: true,
      logLevel: 'info'
    });

    Error Handling

    import { 
      MeshError, 
      AuthenticationError, 
      TaskExecutionError,
      TimeoutError 
    } from '@meshailabs/sdk';
    
    try {
      const result = await client.execute(task);
    } catch (error) {
      if (error instanceof AuthenticationError) {
        console.error('Invalid API key');
      } else if (error instanceof TaskExecutionError) {
        console.error('Task failed:', error.taskId, error.message);
      } else if (error instanceof TimeoutError) {
        console.error('Task timed out');
      } else {
        console.error('Unknown error:', error);
      }
    }

    TypeScript Support

    The SDK is written in TypeScript and provides full type definitions:

    import {
      MeshClient,
      TaskData,
      TaskResult,
      AgentInfo,
      AgentRegistration,
      RoutingStrategy,
      TaskStatus,
      AgentStatus
    } from '@meshailabs/sdk';
    
    // All types are fully typed
    const task: TaskData = {
      taskType: 'analysis',
      input: { data: 'sample' },
      requiredCapabilities: ['analysis'],
      routingStrategy: RoutingStrategy.CAPABILITY_MATCH,
      // New: Task-specific instructions
      instructions: {
        taskGuidelines: ['Focus on key insights'],
        outputRequirements: 'JSON format with findings array'
      }
    };
    
    // Agent with instructions
    const agent: AgentRegistration = {
      id: 'agent-001',
      name: 'Analysis Agent',
      framework: 'langchain',
      capabilities: ['analysis'],
      endpoint: 'https://api.example.com',
      instructions: {
        guidelines: ['Provide data-driven insights'],
        guardrails: ['No PII in outputs']
      }
    };
    
    const result: TaskResult = await client.execute(task);

    API Reference

    MeshClient

    Main client for interacting with MeshAI:

    • initialize() - Initialize the client
    • execute(task, options?) - Execute a task
    • executeWithAgent(agentId, task, options?) - Execute with specific agent
    • discoverAgents(query) - Find agents by capabilities
    • getAgent(agentId) - Get agent details
    • listAgents(limit?, offset?) - List all agents
    • quickExecute(input, capabilities?) - Simplified task execution

    RegistryClient

    Agent management operations:

    • registerAgent(registration) - Register new agent
    • updateAgent(agentId, updates) - Update agent info
    • deregisterAgent(agentId) - Remove agent
    • checkAgentHealth(agentId) - Health check
    • getAgentMetrics(agentId) - Performance metrics

    RuntimeClient

    Task execution operations:

    • execute(task, options?) - Execute task
    • executeBatch(tasks) - Execute multiple tasks
    • getTaskStatus(taskId) - Check task status
    • cancelTask(taskId) - Cancel running task
    • retryTask(taskId) - Retry failed task

    Examples

    Basic Example

    import { MeshClient } from '@meshailabs/sdk';
    
    async function main() {
      const client = await MeshClient.createAndInitialize();
      
      const result = await client.quickExecute(
        'Translate "Hello World" to Spanish'
      );
      
      console.log(result.result);
      client.disconnect();
    }
    
    main().catch(console.error);

    WebSocket Monitoring

    const result = await client.execute(task, {
      async: true,
      onProgress: (status, details) => {
        console.log(`Status: ${status}`);
        if (details) {
          console.log('Details:', details);
        }
      },
      callback: (result) => {
        if (result.status === TaskStatus.COMPLETED) {
          console.log('Success:', result.result);
        } else if (result.status === TaskStatus.FAILED) {
          console.error('Failed:', result.error);
        }
      }
    });

    Support

    License

    MIT License - see LICENSE file for details

    Contributing

    Contributions are welcome! Please read our Contributing Guide for details.