Package Exports
- @roadiehq/rag-ai-backend-embeddings-openai
- @roadiehq/rag-ai-backend-embeddings-openai/dist/index.cjs.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@roadiehq/rag-ai-backend-embeddings-openai) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
⚠️ Reference Implementation Only
The rag-ai plugin and its modules are a reference implementation provided for demonstration and educational purposes.
We provide minimal support for these components and do not actively maintain or update them.
RAG AI Backend-embeddings OpenAI submodule
This is a submodule for the @roadiehq/rag-ai-backend module, which provides functionality to use OpenAI embeddings to generate a RAG AI Backend plugin for Backstage. It exposes configuration options to configure OpenAI API token and wanted embeddings model, as well as the parameters for the model.
Initialization
const vectorStore = await createRoadiePgVectorStore({ logger, database });
const augmentationIndexer = await initializeOpenAiEmbeddings({
logger,
catalogApi,
auth,
vectorStore,
discovery,
config,
});Configuration Options
The module expects an API Token, the name of the embeddings generative AI model and its configuration options to be configured via app-config.
You can generate an API Token in here: https://platform.openai.com/api-keys
ai:
embeddings:
# OpenAI Embeddings configuration
openai:
# (Optional) The API key for accessing OpenAI services. Defaults to process.env.OPENAI_API_KEY
openAiApiKey: 'sk-123...'
# (Optional) Specify URL of self-hosted OpenAI compliant endpoint. Defaults to OpenAI's public API https://api.openai.com
openAiBaseUrl: ''
# (Optional) Name of the OpenAI model to use to create Embeddings. Defaults to text-embedding-3-large
modelName: 'text-embedding-3-large'
# The size of the batch to use when creating embeddings. Defaults to 512, max is 2048
batchSize: 512
# The number of dimensions to generate. Defaults to use the default value from the chosen model
embeddingsDimensions: 3072Example minimal configuration
ai:
embeddings:
openAI: {} # uses env variable OPENAI_API_KEY for API key, model 'text-embedding-3-large' for embeddings creation modelRoadie gives you a hassle-free, fully customisable SaaS Backstage. Find out more here: https://roadie.io.