Package Exports
- @samchon/openapi
- @samchon/openapi/lib/index.js
- @samchon/openapi/lib/index.mjs
- @samchon/openapi/lib/utils/LlmSchemaSeparator
- @samchon/openapi/lib/utils/LlmSchemaSeparator.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@samchon/openapi) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
@samchon/openapi
flowchart
subgraph "OpenAPI Specification"
v20("Swagger v2.0") --upgrades--> emended[["OpenAPI v3.1 (emended)"]]
v30("OpenAPI v3.0") --upgrades--> emended
v31("OpenAPI v3.1") --emends--> emended
end
subgraph "OpenAPI Generator"
emended --normalizes--> migration[["Migration Schema"]]
migration --"Artificial Intelligence"--> lfc{{"LLM Function Calling Application"}}
end
OpenAPI definitions, converters and LLM function calling application composer.
@samchon/openapi is a collection of OpenAPI types for every versions, and converters for them. In the OpenAPI types, there is an "emended" OpenAPI v3.1 specification, which has removed ambiguous and duplicated expressions for the clarity. Every conversions are based on the emended OpenAPI v3.1 specification.
@samchon/openapi also provides LLM (Large Language Model) function calling application composer from the OpenAPI document with many strategies. With the HttpLlm module, you can perform the LLM funtion calling extremely easily just by delivering the OpenAPI (Swagger) document.
[!TIP]
LLM selects proper function and fill arguments.
In nowadays, most LLM (Large Language Model) like OpenAI are supporting "function calling" feature. The "LLM function calling" means that LLM automatically selects a proper function and fills parameter values from conversation with the user (may by chatting text).
Setup
npm install @samchon/openapiJust install by npm i @samchon/openapi command.
Here is an example code utilizing the @samchon/openapi for LLM function calling purpose.
import {
HttpLlm,
IHttpLlmApplication,
IHttpLlmFunction,
OpenApi,
OpenApiV3,
OpenApiV3_1,
SwaggerV2,
} from "@samchon/openapi";
import fs from "fs";
import typia from "typia";
const main = async (): Promise<void> => {
// read swagger document and validate it
const swagger:
| SwaggerV2.IDocument
| OpenApiV3.IDocument
| OpenApiV3_1.IDocument = JSON.parse(
await fs.promises.readFile("swagger.json", "utf8"),
);
typia.assert(swagger); // recommended
// convert to emended OpenAPI document,
// and compose LLM function calling application
const document: OpenApi.IDocument = OpenApi.convert(swagger);
const application: IHttpLlmApplication = HttpLlm.application(document);
// Let's imagine that LLM has selected a function to call
const func: IHttpLlmFunction | undefined = application.functions.find(
// (f) => f.name === "llm_selected_fuction_name"
(f) => f.path === "/bbs/articles" && f.method === "post",
);
if (func === undefined) throw new Error("No matched function exists.");
// actual execution is by yourself
const article = await HttpLlm.execute({
connection: {
host: "http://localhost:3000",
},
application,
function: func,
arguments: [
{
title: "Hello, world!",
body: "Let's imagine that this argument is composed by LLM.",
thumbnail: null,
},
],
});
console.log("article", article);
};
main().catch(console.error);OpenAPI Definitions
flowchart
v20(Swagger v2.0) --upgrades--> emended[["<b><u>OpenAPI v3.1 (emended)</u></b>"]]
v30(OpenAPI v3.0) --upgrades--> emended
v31(OpenAPI v3.1) --emends--> emended
emended --downgrades--> v20d(Swagger v2.0)
emended --downgrades--> v30d(Swagger v3.0)@samchon/openapi support every versions of OpenAPI specifications with detailed TypeScript types.
Also, @samchon/openapi provides "emended OpenAPI v3.1 definition" which has removed ambiguous and duplicated expressions for clarity. It has emended original OpenAPI v3.1 specification like above. You can compose the "emended OpenAPI v3.1 document" by calling the OpenApi.convert() function.
- Operation
- Merge
OpenApiV3_1.IPathItem.parameterstoOpenApi.IOperation.parameters - Resolve references of
OpenApiV3_1.IOperationmembers - Escape references of
OpenApiV3_1.IComponents.examples
- Merge
- JSON Schema
- Decompose mixed type:
OpenApiV3_1.IJsonSchema.IMixed - Resolve nullable property:
OpenApiV3_1.IJsonSchema.__ISignificant.nullable - Array type utilizes only single
OpenAPI.IJsonSchema.IArray.items - Tuple type utilizes only
OpenApi.IJsonSchema.ITuple.prefixItems - Merge
OpenApiV3_1.IJsonSchema.IAnyOftoOpenApi.IJsonSchema.IOneOf - Merge
OpenApiV3_1.IJsonSchema.IRecursiveReferencetoOpenApi.IJsonSchema.IReference - Merge
OpenApiV3_1.IJsonSchema.IAllOftoOpenApi.IJsonSchema.IObject
- Decompose mixed type:
Conversions to another version's OpenAPI document is also based on the "emended OpenAPI v3.1 specification" like above diagram. You can do it through OpenApi.downgrade() function. Therefore, if you want to convert Swagger v2.0 document to OpenAPI v3.0 document, you have to call two functions; OpenApi.convert() and then OpenApi.downgrade().
At last, if you utilize typia library with @samchon/openapi types, you can validate whether your OpenAPI document is following the standard specification or not. Just visit one of below playground links, and paste your OpenAPI document URL address. This validation strategy would be superior than any other OpenAPI validator libraries.
- Playground Links
import { OpenApi, OpenApiV3, OpenApiV3_1, SwaggerV2 } from "@samchon/openapi";
import typia from "typia";
const main = async (): Promise<void> => {
// GET YOUR OPENAPI DOCUMENT
const response: Response = await fetch(
"https://raw.githubusercontent.com/samchon/openapi/master/examples/v3.0/openai.json"
);
const document: any = await response.json();
// TYPE VALIDATION
const result = typia.validate<
| OpenApiV3_1.IDocument
| OpenApiV3.IDocument
| SwaggerV2.IDocument
>(document);
if (result.success === false) {
console.error(result.errors);
return;
}
// CONVERT TO EMENDED
const emended: OpenApi.IDocument = OpenApi.convert(document);
console.info(emended);
};
main().catch(console.error);LLM Function Calling
Preface
flowchart
subgraph "OpenAPI Specification"
v20("Swagger v2.0") --upgrades--> emended[["OpenAPI v3.1 (emended)"]]
v30("OpenAPI v3.0") --upgrades--> emended
v31("OpenAPI v3.1") --emends--> emended
end
subgraph "OpenAPI Generator"
emended --normalizes--> migration[["Migration Schema"]]
migration --"Artificial Intelligence"--> lfc{{"<b><u>LLM Function Calling Application</b></u>"}}
endLLM function calling application from OpenAPI document.
@samchon/openapi provides LLM (Large Language Model) funtion calling application from the "emended OpenAPI v3.1 document". Therefore, if you have any HTTP backend server and succeeded to build an OpenAPI document, you can easily make the A.I. chatbot application.
In the A.I. chatbot, LLM will select proper function to remotely call from the conversations with user, and fill arguments of the function automatically. If you actually execute the function call through the HttpLlm.execute() funtion, it is the "LLM function call."
Let's enjoy the fantastic LLM function calling feature very easily with @samchon/openapi.
[!NOTE]
Preparing playground website utilizing
web-llm.
[!TIP]
LLM selects proper function and fill arguments.
In nowadays, most LLM (Large Language Model) like OpenAI are supporting "function calling" feature. The "LLM function calling" means that LLM automatically selects a proper function and fills parameter values from conversation with the user (may by chatting text).
Execution
Actual function call execution is by yourself.
LLM (Large Language Model) providers like OpenAI selects a proper function to call from the conversations with users, and fill arguments of it. However, function calling feature supported by LLM providers do not perform the function call execution. The actual execution responsibility is on you.
In @samchon/openapi, you can execute the LLM function calling by HttpLlm.execute() (or HttpLlm.propagate()) function. Here is an example code executing the LLM function calling through the HttpLlm.execute() function. As you can see, to execute the LLM function call, you have to deliver these informations:
- Connection info to the HTTP server
- Application of the LLM fuction calling
- LLM function schema to call
- Arguments for the function call (maybe composed by LLM)
import {
HttpLlm,
IHttpLlmApplication,
IHttpLlmFunction,
OpenApi,
OpenApiV3,
OpenApiV3_1,
SwaggerV2,
} from "@samchon/openapi";
import fs from "fs";
import typia from "typia";
import { v4 } from "uuid";
const main = async (): Promise<void> => {
// read swagger document and validate it
const swagger:
| SwaggerV2.IDocument
| OpenApiV3.IDocument
| OpenApiV3_1.IDocument = JSON.parse(
await fs.promises.readFile("swagger.json", "utf8"),
);
typia.assert(swagger); // recommended
// convert to emended OpenAPI document,
// and compose LLM function calling application
const document: OpenApi.IDocument = OpenApi.convert(swagger);
const application: IHttpLlmApplication = HttpLlm.application(document);
// Let's imagine that LLM has selected a function to call
const func: IHttpLlmFunction | undefined = application.functions.find(
// (f) => f.name === "llm_selected_fuction_name"
(f) => f.path === "/bbs/{section}/articles/{id}" && f.method === "put",
);
if (func === undefined) throw new Error("No matched function exists.");
// actual execution is by yourself
const article = await HttpLlm.execute({
connection: {
host: "http://localhost:3000",
},
application,
function: func,
arguments: [
"general",
v4(),
{
title: "Hello, world!",
body: "Let's imagine that this argument is composed by LLM.",
thumbnail: null,
},
],
});
console.log("article", article);
};
main().catch(console.error);Keyword Parameter
Combine parameters into single object.
If you configure keyword option when composing the LLM (Large Language Model) function calling appliation, every parameters of OpenAPI operations would be combined to a single object type in the LLM funtion calling schema. This strategy is loved in many A.I. Chatbot developers, because LLM tends to a little professional in the single parameter function case.
Also, do not worry about the function call execution case. You don't need to resolve the keyworded parameter manually. The HttpLlm.execute() and HttpLlm.propagate() functions will resolve the keyworded parameter automatically by analyzing the IHttpLlmApplication.options property.
import {
HttpLlm,
IHttpLlmApplication,
IHttpLlmFunction,
OpenApi,
OpenApiV3,
OpenApiV3_1,
SwaggerV2,
} from "@samchon/openapi";
import fs from "fs";
import typia from "typia";
import { v4 } from "uuid";
const main = async (): Promise<void> => {
// read swagger document and validate it
const swagger:
| SwaggerV2.IDocument
| OpenApiV3.IDocument
| OpenApiV3_1.IDocument = JSON.parse(
await fs.promises.readFile("swagger.json", "utf8"),
);
typia.assert(swagger); // recommended
// convert to emended OpenAPI document,
// and compose LLM function calling application
const document: OpenApi.IDocument = OpenApi.convert(swagger);
const application: IHttpLlmApplication = HttpLlm.application(document, {
keyword: true,
});
// Let's imagine that LLM has selected a function to call
const func: IHttpLlmFunction | undefined = application.functions.find(
// (f) => f.name === "llm_selected_fuction_name"
(f) => f.path === "/bbs/{section}/articles/{id}" && f.method === "put",
);
if (func === undefined) throw new Error("No matched function exists.");
// actual execution is by yourself
const article = await HttpLlm.execute({
connection: {
host: "http://localhost:3000",
},
application,
function: func,
arguments: [
// one single object with key-value paired
{
section: "general",
id: v4(),
query: {
language: "en-US",
format: "markdown",
},
body: {
title: "Hello, world!",
body: "Let's imagine that this argument is composed by LLM.",
thumbnail: null,
},
},
],
});
console.log("article", article);
};
main().catch(console.error);Separation
Arguments from both Human and LLM sides.
When composing parameter arguments through the LLM (Large Language Model) function calling, there can be a case that some parameters (or nested properties) must be composed not by LLM, but by Human. File uploading feature, or sensitive information like secret key (password) cases are the representative examples.
In that case, you can configure the LLM function calling schemas to exclude such Human side parameters (or nested properties) by IHttpLlmApplication.options.separate property. Instead, you have to merge both Human and LLM composed parameters into one by calling the HttpLlm.mergeParameters() before the LLM function call execution of HttpLlm.execute() function.
Here is the example code separating the file uploading feature from the LLM function calling schema, and combining both Human and LLM composed parameters into one before the LLM function call execution.
import {
HttpLlm,
IHttpLlmApplication,
IHttpLlmFunction,
LlmTypeChecker,
OpenApi,
OpenApiV3,
OpenApiV3_1,
SwaggerV2,
} from "@samchon/openapi";
import fs from "fs";
import typia from "typia";
import { v4 } from "uuid";
const main = async (): Promise<void> => {
// read swagger document and validate it
const swagger:
| SwaggerV2.IDocument
| OpenApiV3.IDocument
| OpenApiV3_1.IDocument = JSON.parse(
await fs.promises.readFile("swagger.json", "utf8"),
);
typia.assert(swagger); // recommended
// convert to emended OpenAPI document,
// and compose LLM function calling application
const document: OpenApi.IDocument = OpenApi.convert(swagger);
const application: IHttpLlmApplication = HttpLlm.application(document, {
keyword: false,
separate: (schema) =>
LlmTypeChecker.isString(schema) && schema.contentMediaType !== undefined,
});
// Let's imagine that LLM has selected a function to call
const func: IHttpLlmFunction | undefined = application.functions.find(
// (f) => f.name === "llm_selected_fuction_name"
(f) => f.path === "/bbs/articles/{id}" && f.method === "put",
);
if (func === undefined) throw new Error("No matched function exists.");
// actual execution is by yourself
const article = await HttpLlm.execute({
connection: {
host: "http://localhost:3000",
},
application,
function: func,
arguments: HttpLlm.mergeParameters({
function: func,
llm: [
// LLM composed parameter values
"general",
v4(),
{
language: "en-US",
format: "markdown",
},
{
title: "Hello, world!",
content: "Let's imagine that this argument is composed by LLM.",
},
],
human: [
// Human composed parameter values
{ thumbnail: "https://example.com/thumbnail.jpg" },
],
}),
});
console.log("article", article);
};
main().catch(console.error);