Package Exports
- @stdlib/array-complex64
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/array-complex64) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Complex64Array
64-bit complex number array.
Installation
npm install @stdlib/array-complex64Usage
var Complex64Array = require( '@stdlib/array-complex64' );Complex64Array()
Creates a 64-bit complex number array.
var arr = new Complex64Array();
// returns <Complex64Array>Complex64Array( length )
Creates a 64-bit complex number array having a specified length.
var arr = new Complex64Array( 10 );
// returns <Complex64Array>
var len = arr.length;
// returns 10Complex64Array( typedarray )
Creates a 64-bit complex number array from a typed array containing interleaves real and imaginary components.
var Float32Array = require( '@stdlib/array-float32' );
var buf = new Float32Array( [ 1.0, -1.0, 2.0, -2.0 ] ); // [ re, im, re, im ]
// returns <Float32Array>[ 1.0, -1.0, 2.0, -2.0 ]
var arr = new Complex64Array( buf );
// returns <Complex64Array>
var len = arr.length;
// returns 2Complex64Array( obj )
Creates a 64-bit complex number array from an array-like object or iterable.
var Complex64 = require( '@stdlib/complex-float32' );
// From an array of interleaved real and imaginary components:
var arr1 = new Complex64Array( [ 1.0, -1.0, 2.0, -2.0 ] );
// returns <Complex64Array>
var len = arr1.length;
// returns 2
// From an array containing complex numbers:
var buf = [ new Complex64( 1.0, -1.0 ), new Complex64( 2.0, -2.0 ) ];
var arr2 = new Complex64Array( buf );
len = arr2.length;
// returns 2Complex64Array( buffer[, byteOffset[, length]] )
Returns a 64-bit complex number array view of an ArrayBuffer.
var ArrayBuffer = require( '@stdlib/array-buffer' );
var buf = new ArrayBuffer( 240 );
var arr1 = new Complex64Array( buf );
// returns <Complex64Array>
var len = arr1.length;
// returns 30
var arr2 = new Complex64Array( buf, 8 );
// returns <Complex64Array>
len = arr2.length;
// returns 29
var arr3 = new Complex64Array( buf, 8, 20 );
// returns <Complex64Array>
len = arr3.length;
// returns 20Properties
Complex64Array.BYTES_PER_ELEMENT
Static property returning the size (in bytes) of each array element.
var nbytes = Complex64Array.BYTES_PER_ELEMENT;
// returns 8Complex64Array.name
Static property returning the constructor name.
var str = Complex64Array.name;
// returns 'Complex64Array'Complex64Array.prototype.buffer
Pointer to the underlying data buffer.
var arr = new Complex64Array( 2 );
// returns <Complex64Array>
var buf = arr.buffer;
// returns <ArrayBuffer>Complex64Array.prototype.byteLength
Size (in bytes) of the array.
var arr = new Complex64Array( 10 );
// returns <Complex64Array>
var nbytes = arr.byteLength;
// returns 80Complex64Array.prototype.byteOffset
Offset (in bytes) of the array from the start of its underlying ArrayBuffer.
var ArrayBuffer = require( '@stdlib/array-buffer' );
var arr = new Complex64Array( 10 );
// returns <Complex64Array>
var offset = arr.byteOffset;
// returns 0
var buf = new ArrayBuffer( 240 );
arr = new Complex64Array( buf, 64 );
// returns <Complex64Array>
offset = arr.byteOffset;
// returns 64Complex64Array.prototype.BYTES_PER_ELEMENT
Size (in bytes) of each array element.
var arr = new Complex64Array( 10 );
// returns <Complex64Array>
var nbytes = arr.BYTES_PER_ELEMENT;
// returns 8Complex64Array.prototype.length
Number of array elements.
var arr = new Complex64Array( 10 );
// returns <Complex64Array>
var len = arr.length;
// returns 10Methods
Complex64Array.from( src[, clbk[, thisArg]] )
Creates a new 64-bit complex number array from an array-like object or an iterable.
var Complex64 = require( '@stdlib/complex-float32' );
// Create an array from interleaved real and imaginary components:
var arr = Complex64Array.from( [ 1.0, -1.0 ] );
// returns <Complex64Array>
var len = arr.length;
// returns 1
// Create an array from an array of complex numbers:
arr = Complex64Array.from( [ new Complex64( 1.0, -1.0 ) ] );
// returns <Complex64Array>
len = arr.length;
// returns 1The iterator returned by an iterable must return either a complex number or an array-like object containing a real and imaginary component.
var ITERATOR_SYMBOL = require( '@stdlib/symbol-iterator' );
var Float32Array = require( '@stdlib/array-float32' );
var real = require( '@stdlib/complex-real' );
var imag = require( '@stdlib/complex-imag' );
var iter;
var arr;
var len;
var re;
var im;
var z;
// Define a function which returns an iterator protocol-compliant object...
function iterable() {
var buf = new Float32Array( 2 );
var i = 0;
return {
'next': next
};
function next() {
i += 1;
if ( i < 3 ) {
// Reuse allocated memory...
buf[ 0 ] = i;
buf[ 1 ] = -i;
return {
'value': buf
};
}
return {
'done': true
};
}
}
if ( ITERATOR_SYMBOL === null ) {
console.error( 'Environment does not support iterables.' );
} else {
// Create an iterable:
iter = {};
iter[ ITERATOR_SYMBOL ] = iterable;
// Generate a complex number array:
arr = Complex64Array.from( iter );
// returns <Complex64Array>
len = arr.length;
// returns 2
z = arr.get( 0 );
// returns <Complex64>
re = real( z );
// returns 1.0
im = imag( z );
// returns -1.0
}To invoke a function for each src value, provide a callback function. If src is an iterable or an array-like object containing complex numbers, the callback must return either a complex number
var Complex64 = require( '@stdlib/complex-float32' );
var real = require( '@stdlib/complex-real' );
var imag = require( '@stdlib/complex-imag' );
function map( z ) {
return new Complex64( real(z)*2.0, imag(z)*2.0 );
}
// Create a source array:
var src = [ new Complex64( 1.0, -1.0 ) ];
// Create a new complex number array by scaling the source array:
var arr = Complex64Array.from( src, map );
// returns <Complex64Array>
var len = arr.length;
// returns 1
var z = arr.get( 0 );
// returns <Complex64>
var re = real( z );
// returns 2.0
var im = imag( z );
// returns -2.0or an array-like object containing real and imaginary components
var Float32Array = require( '@stdlib/array-float32' );
var Complex64 = require( '@stdlib/complex-float32' );
var real = require( '@stdlib/complex-real' );
var imag = require( '@stdlib/complex-imag' );
// Return a callback which reuses allocated memory...
function mapFcn() {
var buf = new Float32Array( 2 );
return map;
function map( z ) {
buf[ 0 ] = real( z ) * 2.0;
buf[ 1 ] = imag( z ) * 2.0;
return buf;
}
}
// Create a source array:
var src = [ new Complex64( 1.0, -1.0 ), new Complex64( 2.0, -2.0 ) ];
// Create a new complex number array by scaling the source array:
var arr = Complex64Array.from( src, mapFcn() );
// returns <Complex64Array>
var len = arr.length;
// returns 2
var z = arr.get( 0 );
// returns <Complex64>
var re = real( z );
// returns 2.0
var im = imag( z );
// returns -2.0
z = arr.get( 1 );
// returns <Complex64>
re = real( z );
// returns 4.0
im = imag( z );
// returns -4.0If src is an array-like object containing interleaved real and imaginary components, the callback is invoked for each component and should return the transformed component value.
var Float32Array = require( '@stdlib/array-float32' );
var Complex64 = require( '@stdlib/complex-float32' );
var real = require( '@stdlib/complex-real' );
var imag = require( '@stdlib/complex-imag' );
function map( v ) {
return v * 2.0;
}
// Create a source array:
var src = new Float32Array( [ 1.0, -1.0 ] );
// Create a new complex number array by scaling the source array:
var arr = Complex64Array.from( src, map );
// returns <Complex64Array>
var len = arr.length;
// returns 1
var z = arr.get( 0 );
// returns <Complex64>
var re = real( z );
// returns 2.0
var im = imag( z );
// returns -2.0A callback function is provided two arguments:
value: source valueindex: source index
To set the callback execution context, provide a thisArg.
var Complex64 = require( '@stdlib/complex-float32' );
var real = require( '@stdlib/complex-real' );
var imag = require( '@stdlib/complex-imag' );
function map( z ) {
this.count += 1;
return new Complex64( real(z)*2.0, imag(z)*2.0 );
}
// Create a source array:
var src = [ new Complex64( 1.0, -1.0 ), new Complex64( 1.0, -1.0 ) ];
// Define an execution context:
var ctx = {
'count': 0
};
// Create a new complex number array by scaling the source array:
var arr = Complex64Array.from( src, map, ctx );
// returns <Complex64Array>
var len = arr.length;
// returns 2
var n = ctx.count;
// returns 2Complex64Array.of( element0[, element1[, ...elementN]] )
Creates a new 64-bit complex number array from a variable number of arguments.
var Complex64 = require( '@stdlib/complex-float32' );
var arr = Complex64Array.of( 1.0, -1.0, 2.0, -2.0 );
// returns <Complex64Array>
var len = arr.length;
// returns 2
var z1 = new Complex64( 1.0, -1.0 );
var z2 = new Complex64( 2.0, -2.0 );
arr = Complex64Array.of( z1, z2 );
// returns <Complex64Array>
len = arr.length;
// returns 2Complex64Array.prototype.copyWithin( target, start[, end] )
Copies a sequence of elements within the array starting at start and ending at end (non-inclusive) to the position starting at target.
var Complex64 = require( '@stdlib/complex-float32' );
var arr = new Complex64Array( 4 );
// Set the array elements:
arr.set( new Complex64( 1.0, -1.0 ), 0 );
arr.set( new Complex64( 2.0, -2.0 ), 1 );
arr.set( new Complex64( 3.0, -3.0 ), 2 );
arr.set( new Complex64( 4.0, -4.0 ), 3 );
// Get the first array element:
var z = arr.get( [ 0.0, 0.0 ], 0 );
// returns [ 1.0, -1.0 ]
// Get the second array element:
z = arr.get( [ 0.0, 0.0 ], 1 );
// returns [ 2.0, -2.0 ]
// Copy the last two elements to the first two elements:
arr.copyWithin( 0, 2 );
// Get the first array element:
z = arr.get( [ 0.0, 0.0 ], 0 );
// returns [ 3.0, -3.0 ]
// Get the second array element:
z = arr.get( [ 0.0, 0.0 ], 1 );
// returns [ 4.0, -4.0 ]By default, end equals the number of array elements (i.e., one more than the last array index). To limit the sequence length, provide an end argument.
var Complex64 = require( '@stdlib/complex-float32' );
var arr = new Complex64Array( 4 );
// Set the array elements:
arr.set( new Complex64( 1.0, -1.0 ), 0 );
arr.set( new Complex64( 2.0, -2.0 ), 1 );
arr.set( new Complex64( 3.0, -3.0 ), 2 );
arr.set( new Complex64( 4.0, -4.0 ), 3 );
// Get the third array element:
var z = arr.get( [ 0.0, 0.0 ], 2 );
// returns [ 3.0, -3.0 ]
// Get the last array element:
z = arr.get( [ 0.0, 0.0 ], 3 );
// returns [ 4.0, -4.0 ]
// Copy the first two elements to the last two elements:
arr.copyWithin( 2, 0, 2 );
// Get the third array element:
z = arr.get( [ 0.0, 0.0 ], 2 );
// returns [ 1.0, -1.0 ]
// Get the last array element:
z = arr.get( [ 0.0, 0.0 ], 3 );
// returns [ 2.0, -2.0 ]When a target, start, and/or end index is negative, the respective index is determined relative to the last array element. The following example achieves the same behavior as the previous example:
var Complex64 = require( '@stdlib/complex-float32' );
var arr = new Complex64Array( 4 );
// Set the array elements:
arr.set( new Complex64( 1.0, -1.0 ), 0 );
arr.set( new Complex64( 2.0, -2.0 ), 1 );
arr.set( new Complex64( 3.0, -3.0 ), 2 );
arr.set( new Complex64( 4.0, -4.0 ), 3 );
// Get the third array element:
var z = arr.get( [ 0.0, 0.0 ], 2 );
// returns [ 3.0, -3.0 ]
// Get the last array element:
z = arr.get( [ 0.0, 0.0 ], 3 );
// returns [ 4.0, -4.0 ]
// Copy the first two elements to the last two elements using negative indices:
arr.copyWithin( -2, -4, -2 );
// Get the third array element:
z = arr.get( [ 0.0, 0.0 ], 2 );
// returns [ 1.0, -1.0 ]
// Get the last array element:
z = arr.get( [ 0.0, 0.0 ], 3 );
// returns [ 2.0, -2.0 ]Complex64Array.prototype.entries()
Returns an iterator for iterating over array key-value pairs.
var Complex64 = require( '@stdlib/complex-float32' );
var real = require( '@stdlib/complex-real' );
var imag = require( '@stdlib/complex-imag' );
var arr = [
new Complex64( 1.0, -1.0 ),
new Complex64( 2.0, -2.0 ),
new Complex64( 3.0, -3.0 )
];
arr = new Complex64Array( arr );
// Create an iterator:
var it = arr.entries();
// Iterate over the key-value pairs...
var v = it.next().value;
// returns [ 0, <Complex64> ]
var re = real( v[ 1 ] );
// returns 1.0
var im = imag( v[ 1 ] );
// returns -1.0
v = it.next().value;
// returns [ 1, <Complex64> ]
re = real( v[ 1 ] );
// returns 2.0
im = imag( v[ 1 ] );
// returns -2.0
v = it.next().value;
// returns [ 2, <Complex64> ]
re = real( v[ 1 ] );
// returns 3.0
im = imag( v[ 1 ] );
// returns -3.0
var bool = it.next().done;
// returns trueComplex64Array.prototype.get( [out,] i )
Returns an array element located at position (index) i.
var real = require( '@stdlib/complex-real' );
var imag = require( '@stdlib/complex-imag' );
var arr = new Complex64Array( 10 );
// Set the first element:
arr.set( [ 1.0, -1.0 ], 0 );
// Get the first element:
var z = arr.get( 0 );
// returns <Complex64>
var re = real( z );
// returns 1.0
var im = imag( z );
// returns -1.0By default, the method returns a 64-bit complex number. To return real and imaginary components separately, provide an array-like object as the first argument.
var arr = new Complex64Array( 10 );
// Set the first element:
arr.set( [ 1.0, -1.0 ], 0 );
// Define an output array:
var out = [ 0.0, 0.0 ];
// Get the first element:
var z = arr.get( out, 0 );
// returns [ 1.0, -1.0 ]
var bool = ( out === z );
// returns trueIf provided an out-of-bounds index, the method returns undefined.
var arr = new Complex64Array( 10 );
var z = arr.get( 100 );
// returns undefined
var out = [ 0.0, 0.0 ];
z = arr.get( out, 100 );
// returns undefined
var bool = ( out === z );
// returns falseComplex64Array.prototype.set( z[, i] )
Sets one or more array elements.
var Complex64 = require( '@stdlib/complex-float32' );
var arr = new Complex64Array( 10 );
// Get the first element:
var z = arr.get( [ 0.0, 0.0 ], 0 );
// returns [ 0.0, 0.0 ]
// Set the first element:
arr.set( new Complex64( 1.0, -1.0 ) );
// Get the first element:
z = arr.get( [ 0.0, 0.0 ], 0 );
// returns [ 1.0, -1.0 ]By default, the method sets array elements starting at position (index) i = 0. To set elements starting elsewhere in the array, provide an index argument i.
var Complex64 = require( '@stdlib/complex-float32' );
var arr = new Complex64Array( 10 );
// Get the fifth element:
var z = arr.get( [ 0.0, 0.0 ], 4 );
// returns [ 0.0, 0.0 ]
// Set the fifth element:
arr.set( new Complex64( 1.0, -1.0 ), 4 );
// Get the fifth element:
z = arr.get( [ 0.0, 0.0 ], 4 );
// returns [ 1.0, -1.0 ]In addition to providing a complex number, to set one or more array elements, provide an array-like object containing either complex numbers
var Complex64 = require( '@stdlib/complex-float32' );
var arr = new Complex64Array( 10 );
// Define an array of complex numbers:
var buf = [
new Complex64( 1.0, -1.0 ),
new Complex64( 2.0, -2.0 ),
new Complex64( 3.0, -3.0 )
];
// Set the fifth, sixth, and seventh elements:
arr.set( buf, 4 );
// Get the sixth element:
var z = arr.get( [ 0.0, 0.0 ], 5 );
// returns [ 2.0, -2.0 ]or interleaved real and imaginary components
var Float32Array = require( '@stdlib/array-float32' );
var arr = new Complex64Array( 10 );
// Define an interleaved array of real and imaginary components:
var buf = new Float32Array( [ 1.0, -1.0, 2.0, -2.0, 3.0, -3.0 ] );
// Set the fifth, sixth, and seventh elements:
arr.set( buf, 4 );
// Get the sixth element:
var z = arr.get( [ 0.0, 0.0 ], 5 );
// returns [ 2.0, -2.0 ]A few notes:
- If
iis out-of-bounds, the method throws an error. - If a target array cannot accommodate all values (i.e., the length of source array plus
iexceeds the target array length), the method throws an error. - If provided a typed array which shares an
ArrayBufferwith the target array, the method will intelligently copy the source range to the destination range.
Notes
While a
Complex64Arraystrives to maintain (but does not guarantee) consistency with typed arrays, significant deviations from ECMAScript-defined typed array behavior are as follows:- The constructor does not require the
newoperator. - The constructor and associated methods support a broader variety of input argument types in order to better accommodate complex number input.
- Accessing array elements using bracket syntax (e.g.,
Z[i]) is not supported. Instead, one must use the.get()method which returns a value compatible with complex number output. - The
setmethod has extended behavior in order to support complex numbers.
- The constructor does not require the
Examples
var Complex64 = require( '@stdlib/complex-float32' );
var Float32Array = require( '@stdlib/array-float32' );
var Complex64Array = require( '@stdlib/array-complex64' );
var arr;
var out;
// Create a complex array by specifying a length:
out = new Complex64Array( 3 );
console.log( out );
// Create a complex array from an array of complex numbers:
arr = [
new Complex64( 1.0, -1.0 ),
new Complex64( -3.14, 3.14 ),
new Complex64( 0.5, 0.5 )
];
out = new Complex64Array( arr );
console.log( out );
// Create a complex array from an interleaved typed array:
arr = new Float32Array( [ 1.0, -1.0, -3.14, 3.14, 0.5, 0.5 ] );
out = new Complex64Array( arr );
console.log( out );
// Create a complex array from an array buffer:
arr = new Float32Array( [ 1.0, -1.0, -3.14, 3.14, 0.5, 0.5 ] );
out = new Complex64Array( arr.buffer );
console.log( out );
// Create a complex array from an array buffer view:
arr = new Float32Array( [ 1.0, -1.0, -3.14, 3.14, 0.5, 0.5 ] );
out = new Complex64Array( arr.buffer, 8, 2 );
console.log( out );Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2021. The Stdlib Authors.