Package Exports
- @stdlib/math-strided-special-trunc
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/math-strided-special-trunc) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
trunc
Round each element in a strided array toward zero.
Installation
npm install @stdlib/math-strided-special-truncUsage
var trunc = require( '@stdlib/math-strided-special-trunc' );trunc( N, x, strideX, y, strideY )
Rounds each element in a strided array x toward zero and assigns the results to elements in a strided array y.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.1, 2.5, -3.5, 4.0, -5.9 ] );
// Perform operation in-place:
trunc( x.length, x, 1, x, 1 );
// x => <Float64Array>[ 1.0, 2.0, -3.0, 4.0, -5.0 ]The function accepts the following arguments:
- N: number of indexed elements.
- x: input array-like object.
- strideX: index increment for
x. - y: output array-like object.
- strideY: index increment for
y.
The N and stride parameters determine which elements in x and y are accessed at runtime. For example, to index every other value in x and the first N elements of y in reverse order,
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.1, 2.5, -3.5, 4.0, -5.9, 6.4 ] );
var y = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
trunc( 3, x, 2, y, -1 );
// y => <Float64Array>[ -5.0, -3.0, 1.0, 0.0, 0.0, 0.0 ]Note that indexing is relative to the first index. To introduce an offset, use typed array views.
var Float64Array = require( '@stdlib/array-float64' );
// Initial arrays...
var x0 = new Float64Array( [ 1.1, 2.5, -3.5, 4.0, -5.9, 6.4 ] );
var y0 = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
// Create offset views...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*3 ); // start at 4th element
trunc( 3, x1, -2, y1, 1 );
// y0 => <Float64Array>[ 0.0, 0.0, 0.0, 6.0, 4.0, 2.0 ]trunc.ndarray( N, x, strideX, offsetX, y, strideY, offsetY )
Rounds each element in a strided array x toward zero and assigns the results to elements in a strided array y using alternative indexing semantics.
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.1, 2.5, -3.5, 4.0, -5.9 ] );
var y = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0 ] );
trunc.ndarray( x.length, x, 1, 0, y, 1, 0 );
// y => <Float64Array>[ 1.0, 2.0, -3.0, 4.0, -5.0 ]The function accepts the following additional arguments:
- offsetX: starting index for
x. - offsetY: starting index for
y.
While typed array views mandate a view offset based on the underlying buffer, the offsetX and offsetY parameters support indexing semantics based on starting indices. For example, to index every other value in x starting from the second value and to index the last N elements in y,
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.1, 2.5, -3.5, 4.0, -5.9, 6.4 ] );
var y = new Float64Array( [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] );
trunc.ndarray( 3, x, 2, 1, y, -1, y.length-1 );
// y => <Float64Array>[ 0.0, 0.0, 0.0, 6.0, 4.0, 2.0 ]Examples
var uniform = require( '@stdlib/random-base-uniform' ).factory;
var filledarray = require( '@stdlib/array-filled' );
var dtypes = require( '@stdlib/array-dtypes' );
var gfillBy = require( '@stdlib/blas-ext-base-gfill-by' );
var trunc = require( '@stdlib/math-strided-special-trunc' );
var dt;
var x;
var y;
var i;
dt = dtypes();
for ( i = 0; i < dt.length; i++ ) {
x = filledarray( 0.0, 10, dt[ i ] );
gfillBy( x.length, x, 1, uniform( -100.0, 100.0 ) );
console.log( x );
y = filledarray( 0.0, x.length, 'generic' );
console.log( y );
trunc.ndarray( x.length, x, 1, 0, y, -1, y.length-1 );
console.log( y );
console.log( '' );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2021. The Stdlib Authors.