Package Exports
- @stdlib/stats-base-dists-beta-ctor
- @stdlib/stats-base-dists-beta-ctor/dist
- @stdlib/stats-base-dists-beta-ctor/dist/index.js
- @stdlib/stats-base-dists-beta-ctor/lib/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-base-dists-beta-ctor) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Beta
Beta distribution constructor.
Installation
npm install @stdlib/stats-base-dists-beta-ctor
Usage
var Beta = require( '@stdlib/stats-base-dists-beta-ctor' );
Beta( [alpha, beta] )
Returns a beta distribution object.
var beta = new Beta();
var mu = beta.mean;
// returns 0.5
By default, alpha = 1.0
and beta = 1.0
. To create a distribution having a different alpha
(first shape parameter) and beta
(second shape parameter), provide the corresponding arguments.
var beta = new Beta( 2.0, 4.0 );
var mu = beta.mean;
// returns ~0.333
beta
A beta distribution object has the following properties and methods...
Writable Properties
beta.alpha
First shape parameter of the distribution. alpha
must be a positive number.
var beta = new Beta();
var alpha = beta.alpha;
// returns 1.0
beta.alpha = 3.0;
alpha = beta.alpha;
// returns 3.0
beta.beta
Second shape parameter of the distribution. beta
must be a positive number.
var beta = new Beta( 2.0, 4.0 );
var b = beta.beta;
// returns 4.0
beta.beta = 3.0;
b = beta.beta;
// returns 3.0
Computed Properties
Beta.prototype.entropy
Returns the differential entropy.
var beta = new Beta( 4.0, 12.0 );
var entropy = beta.entropy;
// returns ~-0.869
Beta.prototype.kurtosis
Returns the excess kurtosis.
var beta = new Beta( 4.0, 12.0 );
var kurtosis = beta.kurtosis;
// returns ~0.082
Beta.prototype.mean
Returns the expected value.
var beta = new Beta( 4.0, 12.0 );
var mu = beta.mean;
// returns 0.25
Beta.prototype.median
Returns the median.
var beta = new Beta( 4.0, 12.0 );
var median = beta.median;
// returns ~0.239
Beta.prototype.mode
Returns the mode.
var beta = new Beta( 4.0, 12.0 );
var mode = beta.mode;
// returns ~0.214
Beta.prototype.skewness
Returns the skewness.
var beta = new Beta( 4.0, 12.0 );
var skewness = beta.skewness;
// returns ~0.529
Beta.prototype.stdev
Returns the standard deviation.
var beta = new Beta( 4.0, 12.0 );
var s = beta.stdev;
// returns ~0.105
Beta.prototype.variance
Returns the variance.
var beta = new Beta( 4.0, 12.0 );
var s2 = beta.variance;
// returns ~0.011
Methods
Beta.prototype.cdf( x )
Evaluates the cumulative distribution function (CDF).
var beta = new Beta( 2.0, 4.0 );
var y = beta.cdf( 0.5 );
// returns ~0.813
Beta.prototype.logcdf( x )
Evaluates the natural logarithm of the cumulative distribution function (CDF).
var beta = new Beta( 2.0, 4.0 );
var y = beta.logcdf( 0.5 );
// returns ~-0.208
Beta.prototype.logpdf( x )
Evaluates the natural logarithm of the probability density function (PDF).
var beta = new Beta( 2.0, 4.0 );
var y = beta.logpdf( 0.8 );
// returns ~-2.0557
Beta.prototype.mgf( t )
Evaluates the moment-generating function (MGF).
var beta = new Beta( 2.0, 4.0 );
var y = beta.mgf( 0.5 );
// returns ~1.186
Beta.prototype.pdf( x )
Evaluates the probability density function (PDF).
var beta = new Beta( 2.0, 4.0 );
var y = beta.pdf( 0.8 );
// returns ~0.128
Beta.prototype.quantile( p )
Evaluates the quantile function at probability p
.
var beta = new Beta( 2.0, 4.0 );
var y = beta.quantile( 0.5 );
// returns ~0.314
y = beta.quantile( 1.9 );
// returns NaN
Examples
var Beta = require( '@stdlib/stats-base-dists-beta-ctor' );
var beta = new Beta( 2.0, 4.0 );
var mu = beta.mean;
// returns ~0.333
var median = beta.median;
// returns ~0.314
var s2 = beta.variance;
// returns ~0.032
var y = beta.cdf( 0.8 );
// returns ~0.993
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2024. The Stdlib Authors.