JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 633
  • Score
    100M100P100Q121035F
  • License Apache-2.0

Beta distribution excess kurtosis.

Package Exports

  • @stdlib/stats-base-dists-beta-kurtosis

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-base-dists-beta-kurtosis) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Kurtosis

Beta distribution excess kurtosis.

The excess kurtosis for a beta random variable is

Excess kurtosis for a beta distribution.

where α > 0 is the first shape parameter and β > 0 is the second shape parameter.

Installation

npm install @stdlib/stats-base-dists-beta-kurtosis

Usage

var kurtosis = require( '@stdlib/stats-base-dists-beta-kurtosis' );

kurtosis( alpha, beta )

Returns the excess kurtosis of a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).

var v = kurtosis( 1.0, 1.0 );
// returns -1.2

v = kurtosis( 4.0, 12.0 );
// returns ~0.082

v = kurtosis( 8.0, 2.0 );
// returns ~0.490

If provided NaN as any argument, the function returns NaN.

var v = kurtosis( NaN, 2.0 );
// returns NaN

v = kurtosis( 2.0, NaN );
// returns NaN

If provided alpha <= 0, the function returns NaN.

var v = kurtosis( 0.0, 1.0 );
// returns NaN

v = kurtosis( -1.0, 1.0 );
// returns NaN

If provided beta <= 0, the function returns NaN.

var v = kurtosis( 1.0, 0.0 );
// returns NaN

v = kurtosis( 1.0, -1.0 );
// returns NaN

Examples

var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var kurtosis = require( '@stdlib/stats-base-dists-beta-kurtosis' );

var alpha;
var beta;
var v;
var i;

for ( i = 0; i < 10; i++ ) {
    alpha = ( randu()*10.0 ) + EPS;
    beta = ( randu()*10.0 ) + EPS;
    v = kurtosis( alpha, beta );
    console.log( 'α: %d, β: %d, Kurt(X;α,β): %d', alpha.toFixed( 4 ), beta.toFixed( 4 ), v.toFixed( 4 ) );
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.


License

See LICENSE.

Copyright © 2016-2021. The Stdlib Authors.