JSPM

@stdlib/stats-base-dists-beta-logcdf

0.0.2
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 755
  • Score
    100M100P100Q123350F
  • License Apache-2.0

Beta distribution logarithm of cumulative distribution function (CDF).

Package Exports

  • @stdlib/stats-base-dists-beta-logcdf

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-base-dists-beta-logcdf) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Logarithm of Cumulative Distribution Function

NPM version Build Status Coverage Status dependencies

Beta distribution logarithm of cumulative distribution function.

The cumulative distribution function for a beta random variable is

Cumulative distribution function for a beta distribution.

where alpha > 0 is the first shape parameter and beta > 0 is the second shape parameter. In the definition, Beta( x; a, b ) denotes the lower incomplete beta function and Beta( a, b ) the beta function.

Installation

npm install @stdlib/stats-base-dists-beta-logcdf

Usage

var logcdf = require( '@stdlib/stats-base-dists-beta-logcdf' );

logcdf( x, alpha, beta )

Evaluates the natural logarithm of the cumulative distribution function (CDF) for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).

var y = logcdf( 0.5, 1.0, 1.0 );
// returns ~-0.693

y = logcdf( 0.5, 2.0, 4.0 );
// returns ~-0.208

y = logcdf( 0.2, 2.0, 2.0 );
// returns ~-2.263

y = logcdf( 0.8, 4.0, 4.0 );
// returns ~-0.034

y = logcdf( -0.5, 4.0, 2.0 );
// returns -Infinity

y = logcdf( -Infinity, 4.0, 2.0 );
// returns -Infinity

y = logcdf( 1.5, 4.0, 2.0 );
// returns 0.0

y = logcdf( +Infinity, 4.0, 2.0 );
// returns 0.0

If provided NaN as any argument, the function returns NaN.

var y = logcdf( NaN, 1.0, 1.0 );
// returns NaN

y = logcdf( 0.0, NaN, 1.0 );
// returns NaN

y = logcdf( 0.0, 1.0, NaN );
// returns NaN

If provided alpha <= 0, the function returns NaN.

var y = logcdf( 2.0, -1.0, 0.5 );
// returns NaN

y = logcdf( 2.0, 0.0, 0.5 );
// returns NaN

If provided beta <= 0, the function returns NaN.

var y = logcdf( 2.0, 0.5, -1.0 );
// returns NaN

y = logcdf( 2.0, 0.5, 0.0 );
// returns NaN

logcdf.factory( alpha, beta )

Returns a function for evaluating the natural logarithm of the cumulative distribution function for a beta distribution with parameters alpha (first shape parameter) and beta (second shape parameter).

var mylogcdf = logcdf.factory( 0.5, 0.5 );

var y = mylogcdf( 0.8 );
// returns ~-0.35

y = mylogcdf( 0.3 );
// returns ~-0.997

Notes

  • In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.

Examples

var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var logcdf = require( '@stdlib/stats-base-dists-beta-logcdf' );

var alpha;
var beta;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu();
    alpha = ( randu()*5.0 ) + EPS;
    beta = ( randu()*5.0 ) + EPS;
    y = logcdf( x, alpha, beta );
    console.log( 'x: %d, α: %d, β: %d, ln(F(x;α,β)): %d', x.toFixed( 4 ), alpha.toFixed( 4 ), beta.toFixed( 4 ), y.toFixed( 4 ) );
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.


License

See LICENSE.

Copyright © 2016-2021. The Stdlib Authors.