JSPM

@stdlib/stats-base-dists-geometric-variance

0.0.1
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 31
  • Score
    100M100P100Q80451F
  • License Apache-2.0

Geometric distribution variance.

Package Exports

  • @stdlib/stats-base-dists-geometric-variance

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-base-dists-geometric-variance) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Variance

NPM version Build Status Coverage Status dependencies

Geometric distribution variance.

The variance for a geometric random variable is

Variance for a geometric distribution.

where p is the success probability.

Installation

npm install @stdlib/stats-base-dists-geometric-variance

Usage

var variance = require( '@stdlib/stats-base-dists-geometric-variance' );

variance( p )

Returns the variance of a geometric distribution with success probability p.

var v = variance( 0.1 );
// returns ~90.0

v = variance( 0.5 );
// returns 2.0

If provided a success probability p outside of [0,1], the function returns NaN.

var v = variance( NaN );
// returns NaN

v = variance( 1.5 );
// returns NaN

v = variance( -1.0 );
// returns NaN

Examples

var randu = require( '@stdlib/random-base-randu' );
var round = require( '@stdlib/math-base-special-round' );
var variance = require( '@stdlib/stats-base-dists-geometric-variance' );

var v;
var i;
var p;

for ( i = 0; i < 10; i++ ) {
    p = randu();
    v = variance( p );
    console.log( 'p: %d, Var(X;p): %d', p.toFixed( 4 ), v.toFixed( 4 ) );
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.


License

See LICENSE.

Copyright © 2016-2021. The Stdlib Authors.