Package Exports
- @stdlib/stats-base-dists-invgamma-stdev
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-base-dists-invgamma-stdev) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Standard Deviation
Inverse gamma distribution standard deviation.
The standard deviation for an inverse gamma random variable with shape parameter α
and rate parameter β
is
when α > 2
. Otherwise, the standard deviation is not defined.
Installation
npm install @stdlib/stats-base-dists-invgamma-stdev
Usage
var stdev = require( '@stdlib/stats-base-dists-invgamma-stdev' );
stdev( alpha, beta )
Returns the standard deviation of a inverse gamma distribution with parameters alpha
(shape parameter) and beta
(rate parameter).
var v = stdev( 7.0, 7.0 );
// returns ~0.522
v = stdev( 4.0, 12.0 );
// returns ~2.828
v = stdev( 8.0, 2.0 );
// returns ~0.117
If provided NaN
as any argument, the function returns NaN
.
var v = stdev( NaN, 2.0 );
// returns NaN
v = stdev( 2.0, NaN );
// returns NaN
If provided alpha <= 2
, the function returns NaN
.
var v = stdev( 1.0, 1.0 );
// returns NaN
v = stdev( -1.0, 1.0 );
// returns NaN
If provided beta <= 0
, the function returns NaN
.
var v = stdev( 3.0, 0.0 );
// returns NaN
v = stdev( 3.0, -1.0 );
// returns NaN
Examples
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var stdev = require( '@stdlib/stats-base-dists-invgamma-stdev' );
var alpha;
var beta;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
alpha = ( randu()*10.0 ) + EPS;
beta = ( randu()*10.0 ) + EPS;
v = stdev( alpha, beta );
console.log( 'α: %d, β: %d, SD(X;α,β): %d', alpha.toFixed( 4 ), beta.toFixed( 4 ), v.toFixed( 4 ) );
}
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2021. The Stdlib Authors.