JSPM

@stdlib/stats-base-dists-kumaraswamy-logcdf

0.0.6
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 22
  • Score
    100M100P100Q63769F
  • License Apache-2.0

Natural logarithm of the cumulative distribution function (CDF)for a Kumaraswamy's double bounded distribution.

Package Exports

  • @stdlib/stats-base-dists-kumaraswamy-logcdf
  • @stdlib/stats-base-dists-kumaraswamy-logcdf/lib/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-base-dists-kumaraswamy-logcdf) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Logarithm of Cumulative Distribution Function

NPM version Build Status Coverage Status

Evaluate the natural logarithm of the cumulative distribution function for a Kumaraswamy's double bounded distribution.

The cumulative distribution function for a Kumaraswamy's double bounded random variable is

Cumulative distribution function for a Kumaraswamy's double bounded distribution.

where a > 0 is the first shape parameter and b > 0 is the second shape parameter.

Installation

npm install @stdlib/stats-base-dists-kumaraswamy-logcdf

Usage

var logcdf = require( '@stdlib/stats-base-dists-kumaraswamy-logcdf' );

logcdf( x, a, b )

Evaluates the natural logarithm of the cumulative distribution function (CDF) for a Kumaraswamy's double bounded distribution with parameters a (first shape parameter) and b (second shape parameter).

var y = logcdf( 0.5, 1.0, 1.0 );
// returns ~-0.693

y = logcdf( 0.5, 2.0, 4.0 );
// returns ~-0.38

y = logcdf( 0.2, 2.0, 2.0 );
// returns ~-2.546

y = logcdf( 0.8, 4.0, 4.0 );
// returns ~-0.13

y = logcdf( -0.5, 4.0, 2.0 );
// returns -Infinity

y = logcdf( -Infinity, 4.0, 2.0 );
// returns -Infinity

y = logcdf( 1.5, 4.0, 2.0 );
// returns 0.0

y = logcdf( +Infinity, 4.0, 2.0 );
// returns 0.0

If provided NaN as any argument, the function returns NaN.

var y = logcdf( NaN, 1.0, 1.0 );
// returns NaN

y = logcdf( 0.0, NaN, 1.0 );
// returns NaN

y = logcdf( 0.0, 1.0, NaN );
// returns NaN

If provided a <= 0, the function returns NaN.

var y = logcdf( 2.0, -1.0, 0.5 );
// returns NaN

y = logcdf( 2.0, 0.0, 0.5 );
// returns NaN

If provided b <= 0, the function returns NaN.

var y = logcdf( 2.0, 0.5, -1.0 );
// returns NaN

y = logcdf( 2.0, 0.5, 0.0 );
// returns NaN

logcdf.factory( a, b )

Returns a function for evaluating the natural logarithm of the cumulative distribution function for a Kumaraswamy's double bounded distribution with parameters a (first shape parameter) and b (second shape parameter).

var mylogcdf = logcdf.factory( 0.5, 0.5 );

var y = mylogcdf( 0.8 );
// returns ~-0.393

y = mylogcdf( 0.3 );
// returns ~-1.116

Notes

  • In virtually all cases, using the logpdf or logcdf functions is preferable to manually computing the logarithm of the pdf or cdf, respectively, since the latter is prone to overflow and underflow.

Examples

var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var logcdf = require( '@stdlib/stats-base-dists-kumaraswamy-logcdf' );

var a;
var b;
var x;
var y;
var i;

for ( i = 0; i < 10; i++ ) {
    x = randu();
    a = ( randu()*5.0 ) + EPS;
    b = ( randu()*5.0 ) + EPS;
    y = logcdf( x, a, b );
    console.log( 'x: %d, a: %d, b: %d, ln(F(x;a,b)): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), y.toFixed( 4 ) );
}

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


Copyright © 2016-2022. The Stdlib Authors.