Package Exports
- @stdlib/stats-base-dists-pareto-type1-mean
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-base-dists-pareto-type1-mean) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Mean
Pareto (Type I) distribution expected value.
The expected value for a Pareto (Type I) random variable is
where α > 0 is the shape parameter and β > 0 is the scale parameter.
Installation
npm install @stdlib/stats-base-dists-pareto-type1-meanUsage
var mean = require( '@stdlib/stats-base-dists-pareto-type1-mean' );mean( alpha, beta )
Returns the expected value of a Pareto (Type I) distribution with parameters alpha (shape parameter) and beta (scale parameter).
var v = mean( 2.0, 1.0 );
// returns 2.0
v = mean( 4.0, 12.0 );
// returns 16.0
v = mean( 8.0, 2.0 );
// returns ~2.286If provided NaN as any argument, the function returns NaN.
var v = mean( NaN, 2.0 );
// returns NaN
v = mean( 2.0, NaN );
// returns NaNIf provided 0 < alpha <= 1, the function returns +Infinity.
var v = mean( 0.8, 1.0 );
// returns InfinityIf provided alpha <= 0, the function returns NaN.
var v = mean( 0.0, 1.0 );
// returns NaN
v = mean( -1.0, 1.0 );
// returns NaNIf provided beta <= 0, the function returns NaN.
var v = mean( 1.0, 0.0 );
// returns NaN
v = mean( 1.0, -1.0 );
// returns NaNExamples
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var mean = require( '@stdlib/stats-base-dists-pareto-type1-mean' );
var alpha;
var beta;
var v;
var i;
for ( i = 0; i < 10; i++ ) {
    alpha = ( randu()*10.0 ) + EPS;
    beta = ( randu()*10.0 ) + EPS;
    v = mean( alpha, beta );
    console.log( 'α: %d, β: %d, E(X;α,β): %d', alpha.toFixed( 4 ), beta.toFixed( 4 ), v.toFixed( 4 ) );
}Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
License
See LICENSE.
Copyright
Copyright © 2016-2021. The Stdlib Authors.