Package Exports
- @stdlib/stats-incr-covariance
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-incr-covariance) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
incrcovariance
Compute an unbiased sample covariance incrementally.
For unknown population means, the unbiased sample covariance is defined as
For known population means, the unbiased sample covariance is defined as
Installation
npm install @stdlib/stats-incr-covariance
Usage
var incrcovariance = require( '@stdlib/stats-incr-covariance' );
incrcovariance( [mx, my] )
Returns an accumulator function
which incrementally computes an unbiased sample covariance.
var accumulator = incrcovariance();
If the means are already known, provide mx
and my
arguments.
var accumulator = incrcovariance( 3.0, -5.5 );
accumulator( [x, y] )
If provided input values x
and y
, the accumulator function returns an updated unbiased sample covariance. If not provided input values x
and y
, the accumulator function returns the current unbiased sample covariance.
var accumulator = incrcovariance();
var v = accumulator( 2.0, 1.0 );
// returns 0.0
v = accumulator( 1.0, -5.0 );
// returns 3.0
v = accumulator( 3.0, 3.14 );
// returns 4.07
v = accumulator();
// returns 4.07
Notes
- Input values are not type checked. If provided
NaN
or a value which, when used in computations, results inNaN
, the accumulated value isNaN
for all future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.
Examples
var randu = require( '@stdlib/random-base-randu' );
var incrcovariance = require( '@stdlib/stats-incr-covariance' );
var accumulator;
var x;
var y;
var i;
// Initialize an accumulator:
accumulator = incrcovariance();
// For each simulated datum, update the unbiased sample covariance...
for ( i = 0; i < 100; i++ ) {
x = randu() * 100.0;
y = randu() * 100.0;
accumulator( x, y );
}
console.log( accumulator() );
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
Community
License
See LICENSE.
Copyright
Copyright © 2016-2021. The Stdlib Authors.