JSPM

@stdlib/stats-incr-mcovariance

0.0.6
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 35
  • Score
    100M100P100Q67801F
  • License Apache-2.0

Compute a moving unbiased sample covariance incrementally.

Package Exports

  • @stdlib/stats-incr-mcovariance
  • @stdlib/stats-incr-mcovariance/lib/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-incr-mcovariance) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

incrmcovariance

NPM version Build Status Coverage Status

Compute a moving unbiased sample covariance incrementally.

For unknown population means, the unbiased sample covariance for a window n of size W is defined as

Equation for the unbiased sample covariance for unknown population means.

where j specifies the index of the value at which the window begins. For example, for a trailing (i.e., non-centered) window using zero-based indexing and j greater than or equal to W, j is the n-Wth value with n being the number of values thus analyzed.

For known population means, the unbiased sample covariance for a window n of size W is defined as

Equation for the unbiased sample covariance for known population means.

Installation

npm install @stdlib/stats-incr-mcovariance

Usage

var incrmcovariance = require( '@stdlib/stats-incr-mcovariance' );

incrmcovariance( window[, mx, my] )

Returns an accumulator function which incrementally computes a moving unbiased sample covariance. The window parameter defines the number of values over which to compute the moving unbiased sample covariance.

var accumulator = incrmcovariance( 3 );

If means are already known, provide mx and my arguments.

var accumulator = incrmcovariance( 3, 5.0, -3.14 );

accumulator( [x, y] )

If provided input values x and y, the accumulator function returns an updated unbiased sample covariance. If not provided input values x and y, the accumulator function returns the current unbiased sample covariance.

var accumulator = incrmcovariance( 3 );

var v = accumulator();
// returns null

// Fill the window...
v = accumulator( 2.0, 1.0 ); // [(2.0, 1.0)]
// returns 0.0

v = accumulator( -5.0, 3.14 ); // [(2.0, 1.0), (-5.0, 3.14)]
// returns ~-7.49

v = accumulator( 3.0, -1.0 ); // [(2.0, 1.0), (-5.0, 3.14), (3.0, -1.0)]
// returns -8.35

// Window begins sliding...
v = accumulator( 5.0, -9.5 ); // [(-5.0, 3.14), (3.0, -1.0), (5.0, -9.5)]
// returns -29.42

v = accumulator( -5.0, 1.5 ); // [(3.0, -1.0), (5.0, -9.5), (-5.0, 1.5)]
// returns -24.5

v = accumulator();
// returns -24.5

Notes

  • Input values are not type checked. If provided NaN or a value which, when used in computations, results in NaN, the accumulated value is NaN for at least W-1 future invocations. If non-numeric inputs are possible, you are advised to type check and handle accordingly before passing the value to the accumulator function.
  • As W (x,y) pairs are needed to fill the window buffer, the first W-1 returned values are calculated from smaller sample sizes. Until the window is full, each returned value is calculated from all provided values.

Examples

var randu = require( '@stdlib/random-base-randu' );
var incrmcovariance = require( '@stdlib/stats-incr-mcovariance' );

var accumulator;
var x;
var y;
var i;

// Initialize an accumulator:
accumulator = incrmcovariance( 5 );

// For each simulated datum, update the moving unbiased sample covariance...
for ( i = 0; i < 100; i++ ) {
    x = randu() * 100.0;
    y = randu() * 100.0;
    accumulator( x, y );
}
console.log( accumulator() );

Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright © 2016-2022. The Stdlib Authors.