Package Exports
- @stdlib/stats-iter-variance
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@stdlib/stats-iter-variance) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
itervariance
Compute the unbiased sample variance over all iterated values.
The unbiased sample variance is defined as
Installation
npm install @stdlib/stats-iter-variance
Usage
var itervariance = require( '@stdlib/stats-iter-variance' );
itervariance( iterator[, mean] )
Computes the unbiased sample variance over all iterated values.
var array2iterator = require( '@stdlib/array-to-iterator' );
var arr = array2iterator( [ 2.0, 1.0, 3.0 ] );
var s2 = itervariance( arr );
// returns 1.0
If the mean is already known, provide a mean
argument.
var array2iterator = require( '@stdlib/array-to-iterator' );
var arr = array2iterator( [ 2.0, 1.0, 3.0 ] );
var s2 = itervariance( arr, 2.0 );
// returns ~0.67
Notes
Examples
var runif = require( '@stdlib/random-iter-uniform' );
var itervariance = require( '@stdlib/stats-iter-variance' );
// Create an iterator for generating uniformly distributed pseudorandom numbers:
var rand = runif( -10.0, 10.0, {
'seed': 1234,
'iter': 100
});
// Compute the unbiased sample variance:
var s2 = itervariance( rand );
// returns <number>
console.log( 'Variance: %d.', s2 );
Notice
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
License
See LICENSE.
Copyright
Copyright © 2016-2021. The Stdlib Authors.