JSPM

  • Created
  • Published
  • Downloads 156759
  • Score
    100M100P100Q173188F
  • License Apache-2.0

Pseudo-random number generators w/ unified API

Package Exports

  • @thi.ng/random

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@thi.ng/random) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

random

npm version npm downloads Twitter Follow

This project is part of the @thi.ng/umbrella monorepo.

About

Pseudo-random number generators w/ unified API.

This package provides the IRandom interface and various (mostly seedable) pseudo-random number generator implementations, incl. a IRandom wrapper for Math.random():

Partially ported from C implementations taken from c.thi.ng.

Status

STABLE - used in production

Search or submit any issues for this package

Installation

yarn add @thi.ng/random
// ES module
<script type="module" src="https://unpkg.com/@thi.ng/random?module" crossorigin></script>

// UMD
<script src="https://unpkg.com/@thi.ng/random/lib/index.umd.js" crossorigin></script>

Package sizes (gzipped, pre-treeshake): ESM: 1.51 KB / CJS: 1.62 KB / UMD: 1.63 KB

Dependencies

Usage examples

Several demos in this repo's /examples directory are using this package.

A selection:

Screenshot Description Live demo Source
Interactive inverse FFT toy synth Demo Source
Evolutionary shader generation using genetic programming Demo Source

API

Generated API docs

import { Smush32 } from "@thi.ng/random";

const rnd = new Smush32(0xdecafbad);

// the following methods are available for all generators

// next uint (0 .. 2^32-1)
rnd.int()
// 4022849029

// next float [0.0 .. 1.0)
rnd.float()
// 0.2698542904737066

// next normalized float (w/ opt scale)
// [-scale .. +scale)
rnd.norm(100)
// 57.70723665079737

// next float in given interval [min .. max)
rnd.minmax(10, 20)
// 15.295951807707537

// next gaussian (using iterative CLT approach)
// optional params: num samples, offset, scale
rnd.gaussian()
// 0.10632886109089679

Other utilities

Authors

Karsten Schmidt

License

© 2016 - 2020 Karsten Schmidt // Apache Software License 2.0