JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 12
  • Score
    100M100P100Q83417F
  • License MIT

Model Context Protocol server for Todo for AI task management system. Provides AI assistants with access to task management, project information, and feedback submission capabilities.

Package Exports

  • @todo-for-ai/mcp
  • @todo-for-ai/mcp/dist/index.bundle.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (@todo-for-ai/mcp) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Todo for AI MCP Server

A Model Context Protocol (MCP) server that provides AI assistants with access to the Todo for AI task management system. This allows AI assistants to retrieve tasks, get project information, create new tasks, and submit task feedback through a standardized interface.

Features

  • 🔍 Get Project Tasks: Retrieve pending tasks for a specific project with status filtering
  • 📋 Get Task Details: Fetch detailed information about individual tasks with project context
  • Create Tasks: Create new tasks with full metadata support
  • Submit Feedback: Update task status and provide completion feedback
  • 📊 Project Information: Get comprehensive project statistics and recent tasks
  • 🔄 Automatic Retry: Built-in retry mechanism for network failures
  • 📝 Comprehensive Logging: Detailed logging with configurable levels
  • ⚙️ Flexible Configuration: Environment variables and config file support
  • 🛡️ Type Safety: Full TypeScript support with strict type checking
  • 🚀 Performance: Optimized build with incremental compilation

Installation

npm install -g @todo-for-ai/mcp

From Source

git clone <repository-url>
cd todo-mcp
npm install
npm run build
npm link

Configuration

Environment Variables

Create a .env file or set environment variables:

# Required: Todo API base URL
TODO_API_BASE_URL=http://localhost:50110/todo-for-ai/api/v1

# Optional: API timeout in milliseconds (default: 10000)
TODO_API_TIMEOUT=10000

# Optional: API authentication token
TODO_API_TOKEN=your-api-token

# Optional: Log level (default: info)
LOG_LEVEL=info

# Optional: Environment (default: development)
NODE_ENV=development

Configuration File

Alternatively, create a config.json file:

{
  "apiBaseUrl": "http://localhost:50110",
  "apiTimeout": 10000,
  "apiToken": "",
  "logLevel": "info"
}

Usage

Command Line

# Start the MCP server
todo-for-ai-mcp

# With custom configuration
TODO_API_BASE_URL=http://your-server:8080 todo-for-ai-mcp

IDE Integration

Claude Desktop

Add to your Claude Desktop configuration file (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{
  "mcpServers": {
    "todo-for-ai": {
      "command": "todo-for-ai-mcp",
      "env": {
        "TODO_API_BASE_URL": "http://localhost:50110"
      }
    }
  }
}

Cursor IDE

Add to your Cursor configuration:

{
  "mcpServers": {
    "todo-for-ai": {
      "command": "npx",
      "args": ["todo-for-ai-mcp"],
      "env": {
        "TODO_API_BASE_URL": "http://localhost:50110"
      }
    }
  }
}

Local Development

For development with local Todo for AI server:

{
  "mcpServers": {
    "todo-for-ai-local": {
      "command": "node",
      "args": ["/path/to/todo-mcp/dist/index.js"],
      "env": {
        "TODO_API_BASE_URL": "http://localhost:50110",
        "LOG_LEVEL": "debug"
      }
    }
  }
}

Available Tools

1. get_project_tasks_by_name

Get all pending tasks for a project by name.

Parameters:

  • project_name (string, required): Name of the project
  • status_filter (array, optional): Filter by task status (default: ["todo", "in_progress", "review"])

Example:

{
  "project_name": "My Project",
  "status_filter": ["todo", "in_progress"]
}

2. get_task_by_id

Get detailed information about a specific task.

Parameters:

  • task_id (integer, required): ID of the task to retrieve

Example:

{
  "task_id": 123
}

3. create_task

Create a new task in the specified project.

Parameters:

  • project_id (integer, required): ID of the project
  • title (string, required): Task title
  • content (string, optional): Task content/description
  • status (string, optional): Initial status (default: "todo")
  • priority (string, optional): Task priority (default: "medium")
  • due_date (string, optional): Due date in YYYY-MM-DD format
  • assignee (string, optional): Person assigned to the task
  • tags (array, optional): Tags associated with the task
  • is_ai_task (boolean, optional): Whether this is an AI task (default: true)
  • ai_identifier (string, optional): AI identifier (default: "MCP Client")

Example:

{
  "project_id": 10,
  "title": "Implement new feature",
  "content": "Add user authentication to the application",
  "status": "todo",
  "priority": "high",
  "due_date": "2024-12-31",
  "tags": ["authentication", "security"]
}

4. submit_task_feedback

Submit feedback and update status for a task.

Parameters:

  • task_id (integer, required): ID of the task
  • project_name (string, required): Name of the project
  • feedback_content (string, required): Feedback description
  • status (string, required): New status ("in_progress", "review", "done", "cancelled")
  • ai_identifier (string, optional): AI identifier (default: "MCP Client")

Example:

{
  "task_id": 123,
  "project_name": "My Project",
  "feedback_content": "Completed the implementation as requested",
  "status": "done",
  "ai_identifier": "Claude"
}

5. get_project_info

Get detailed project information including statistics and recent tasks.

Parameters:

  • project_id (integer, optional): ID of the project to retrieve
  • project_name (string, optional): Name of the project to retrieve

Note: Either project_id or project_name must be provided.

Example:

{
  "project_name": "My Project"
}

Development

Prerequisites

  • Node.js 18+
  • npm or yarn
  • Todo for AI backend server running

Setup

# Clone and install
git clone <repository-url>
cd todo-mcp
npm install

# Copy environment file
cp .env.example .env
# Edit .env with your configuration

# Development mode
npm run dev

# Build
npm run build

# Test
npm test

# Lint
npm run lint

Project Structure

todo-mcp/
├── src/
│   ├── index.ts          # Main entry point
│   ├── server.ts         # MCP server implementation
│   ├── api-client.ts     # Todo API client
│   ├── config.ts         # Configuration management
│   ├── logger.ts         # Logging utilities
│   ├── error-handler.ts  # Error handling
│   └── types.ts          # TypeScript types
├── dist/                 # Compiled JavaScript
├── package.json
├── tsconfig.json
├── .env.example
└── README.md

Troubleshooting

Common Issues

  1. Connection Failed

    • Ensure Todo for AI backend is running
    • Check TODO_API_BASE_URL is correct
    • Verify network connectivity
  2. Authentication Errors

    • Check if API token is required
    • Verify TODO_API_TOKEN is set correctly
  3. Tool Not Found

    • Ensure MCP server is properly registered in IDE
    • Check IDE configuration syntax
    • Restart IDE after configuration changes

Debug Mode

Enable debug logging:

LOG_LEVEL=debug todo-for-ai-mcp

Health Check

Test connection to Todo API:

curl http://localhost:50110/api/health

License

MIT License - see LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

Support

For issues and questions:

  • Create an issue on GitHub
  • Check the troubleshooting section
  • Review the logs with debug mode enabled