JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 703
  • Score
    100M100P100Q94242F
  • License MIT

Agentic Quality Engineering Fleet System - AI-driven quality management platform with native TypeScript hooks and optional Claude Flow MCP integration

Package Exports

  • agentic-qe
  • agentic-qe/dist/cli/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (agentic-qe) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Agentic Quality Engineering Fleet

npm version License: MIT TypeScript Node.js

AI-Driven Quality Engineering Automation

A distributed fleet of specialized AI agents for comprehensive software testing, quality assurance, and continuous validation.

Quick Start β€’ Documentation β€’ Contributing β€’ Examples


πŸš€ Features

Autonomous Agent Fleet

  • 16 Specialized QE Agents: Each agent is an expert in specific quality engineering domains
  • AQE Hooks System: 100-500x faster coordination with zero external dependencies
  • Intelligent Coordination: Event-driven architecture with automatic task distribution
  • Scalable: From single developer projects to enterprise-scale testing infrastructure
  • Self-Organizing: Agents autonomously coordinate testing strategies
  • Type-Safe: Full TypeScript type checking and IntelliSense support

Comprehensive Testing

  • AI-Powered Test Generation: Generate comprehensive test suites automatically
  • Multi-Framework Support: Jest, Mocha, Cypress, Playwright, and more
  • Parallel Execution: Execute thousands of tests concurrently with intelligent orchestration
  • Real-Time Coverage Analysis: O(log n) algorithms for instant coverage gap detection

Quality Intelligence

  • Smart Quality Gates: ML-driven quality assessment with risk scoring
  • Security Scanning: SAST, DAST, dependency analysis, and container security
  • Performance Testing: Load testing with k6, JMeter, and Gatling integration
  • Visual Regression: AI-powered screenshot comparison and UI validation

Advanced Capabilities

  • Flaky Test Detection: Statistical analysis with automatic stabilization
  • API Contract Validation: Breaking change detection across versions
  • Test Data Generation: 10,000+ realistic records per second
  • Production Intelligence: Convert production incidents into test scenarios
  • Chaos Engineering: Controlled fault injection for resilience testing

πŸ“¦ Prerequisites & Installation

What's New in v1.0.1

Patch Release - October 7, 2025

πŸ”’ Security Fix: Removed vulnerable faker package (CVE-2022-42003) βœ… Test Infrastructure: Fixed async timing and agent lifecycle issues πŸ“š Documentation: Added comprehensive user guides (USER-GUIDE, CONFIGURATION, TROUBLESHOOTING) πŸ› Bug Fixes: Improved memory management and test reliability

View Complete Changelog

Prerequisites

Before using Agentic QE, you must have:

Required

  • Claude Code: Install from claude.ai/code
  • Node.js: 18.0 or higher
  • npm: 8.0 or higher

Optional (Advanced Features)

  • Claude Flow: For optional MCP coordination features
    npm install -g @claude/flow
    # or
    npx claude-flow@alpha init --force

Note: AQE hooks system requires NO external dependencies. All coordination features are built-in with TypeScript.

Installation Steps

  1. Install Claude Code globally or in your workspace

  2. Install Agentic QE

    Global Installation (Recommended)

    npm install -g agentic-qe
    
    # Verify installation
    aqe --version

    Project Installation

    npm install --save-dev agentic-qe
    
    # Use with npx
    npx aqe init
  3. Local Development

    git clone https://github.com/proffesor-for-testing/agentic-qe.git
    cd agentic-qe
    npm install
    npm run build
    npm link

System Requirements

  • Memory: 2GB+ recommended for large test suites
  • OS: Linux, macOS, Windows (via WSL2)
  • Agent Execution: Via Claude Code's Task tool or MCP integration

⚑ Quick Start

1. Install & Setup MCP Integration

# Install Agentic QE
npm install -g agentic-qe

# Add MCP server to Claude Code
claude mcp add agentic-qe npx -y agentic-qe mcp:start

# Verify connection
claude mcp list

2. Initialize Your Project

# Initialize AQE Fleet in your project
cd your-project
aqe init

What it does:

  • Creates .claude/agents/ with 16 specialized QE agent definitions
  • Creates .claude/commands/ with 8 AQE slash commands
  • Creates .agentic-qe/ configuration directory
  • Updates or creates CLAUDE.md with integration documentation

3. Use from Claude Code CLI

# Ask Claude to generate tests using AQE agents
claude "Initialize AQE fleet and generate comprehensive tests for src/services/user-service.ts with 95% coverage"

Agent Execution Model:

  • Agents are Claude Code agent definitions (markdown files in .claude/agents/)
  • Executed via Claude Code's Task tool OR MCP tools
  • MCP integration enables Claude to orchestrate QE agents directly
  • NOT standalone Node.js processes

πŸ“– Complete MCP Integration Guide - Detailed setup, examples, and use cases

Basic Commands

# Check fleet status
aqe status

# Generate tests for a module
aqe test src/services/user-service.ts

# Analyze test coverage
aqe coverage --threshold 95

# Run quality gate validation
aqe quality

# Execute comprehensive test suite
aqe execute --parallel --coverage

# View all commands
aqe help

Programmatic Usage

import { FleetManager, QEAgentFactory } from 'agentic-qe';

// Initialize fleet
const fleet = new FleetManager({
  maxAgents: 20,
  topology: 'mesh'
});

await fleet.initialize();

// Spawn test generator agent
const testGen = await fleet.spawnAgent('test-generator', {
  targetCoverage: 95,
  framework: 'jest'
});

// Generate tests for a module
const tests = await testGen.execute({
  sourceFile: 'src/services/user-service.ts',
  testStyle: 'property-based'
});

πŸ€– Agent Types

Core Testing Agents

Agent Purpose Key Features
test-generator AI-powered test creation Property-based testing, edge case detection
test-executor Multi-framework execution Parallel processing, retry logic, reporting
coverage-analyzer Real-time gap analysis O(log n) algorithms, trend tracking
quality-gate Intelligent validation ML-driven decisions, risk assessment
quality-analyzer Metrics analysis ESLint, SonarQube, Lighthouse integration

Performance & Security

Agent Purpose Key Features
performance-tester Load & stress testing k6, JMeter, Gatling, bottleneck detection
security-scanner Vulnerability detection SAST, DAST, dependency scanning

Strategic Planning

Agent Purpose Key Features
requirements-validator Testability analysis INVEST criteria, BDD generation
production-intelligence Incident replay RUM analysis, anomaly detection
fleet-commander Hierarchical coordination 50+ agent orchestration

Advanced Testing

Agent Purpose Key Features
regression-risk-analyzer Smart test selection ML patterns, AST analysis
test-data-architect Realistic data generation 10k+ records/sec, GDPR compliant
api-contract-validator Breaking change detection OpenAPI, GraphQL, gRPC
flaky-test-hunter Stability analysis Statistical detection, auto-fix

Specialized

Agent Purpose Key Features
deployment-readiness Release validation Multi-factor risk scoring
visual-tester UI regression AI-powered comparison
chaos-engineer Resilience testing Fault injection, blast radius

πŸ—οΈ Architecture

Core Components

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚           Fleet Manager                      β”‚
β”‚  (Central Coordination & Task Distribution) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                    β”‚
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        β”‚           β”‚           β”‚
   β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β–Όβ”€β”€β”€β”€β”
   β”‚ Agent 1 β”‚ β”‚ Agent 2β”‚ β”‚ Agent Nβ”‚
   β”‚  Pool   β”‚ β”‚  Pool  β”‚ β”‚  Pool  β”‚
   β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”¬β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”¬β”€β”€β”€β”€β”˜
        β”‚          β”‚          β”‚
   β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”
   β”‚        Event Bus               β”‚
   β”‚  (Event-Driven Communication)  β”‚
   β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”˜
        β”‚                      β”‚
   β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”           β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”
   β”‚  Memory β”‚           β”‚Database β”‚
   β”‚  Store  β”‚           β”‚(SQLite) β”‚
   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜           β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Event-Driven Architecture

  • EventBus: Real-time communication between agents
  • Task Queue: Priority-based task scheduling
  • Memory Store: Shared context and learning (SwarmMemoryManager)
  • Persistence: SQLite for state, metrics, and audit trails

AQE Hooks System

Zero Dependencies - Built-in TypeScript hooks for agent coordination:

// Automatic lifecycle hooks in every agent (aqe-hooks protocol)
class QEAgent extends BaseAgent {
  protected async onPreTask(data): Promise<void> { /* prepare */ }
  protected async onPostTask(data): Promise<void> { /* validate */ }
  protected async onTaskError(data): Promise<void> { /* recover */ }
}

// Advanced verification hooks
const hookManager = new VerificationHookManager(memoryStore);
await hookManager.executePreTaskVerification({ task, context });
await hookManager.executePostTaskValidation({ task, result });

Performance: 100-500x faster than external hooks (<1ms vs 100-500ms)

Features:

  • Full TypeScript type safety
  • Direct SwarmMemoryManager integration
  • Built-in RollbackManager support
  • EventBus coordination
  • Context engineering (pre/post tool-use bundles)

πŸ“– Documentation

Getting Started

User Guides

Advanced Topics

Commands Reference


πŸ”§ Configuration

Environment Variables

Create a .env file in your project root:

# Fleet Configuration
FLEET_ID=my-project-fleet
MAX_AGENTS=20
HEARTBEAT_INTERVAL=30000

# Database
DB_TYPE=sqlite
DB_FILENAME=./data/fleet.db

# Logging
LOG_LEVEL=info
LOG_FORMAT=json

# API (optional)
API_PORT=3000
API_HOST=localhost

Fleet Configuration

Create config/fleet.yaml:

fleet:
  id: "my-project-fleet"
  name: "My Project QE Fleet"
  maxAgents: 20
  topology: mesh

agents:
  test-executor:
    count: 3
    config:
      frameworks: [jest, cypress, playwright]
      maxParallelTests: 8
      timeout: 300000

  coverage-analyzer:
    count: 2
    config:
      targetCoverage: 95
      optimizationAlgorithm: sublinear

  quality-analyzer:
    count: 2
    config:
      tools: [eslint, sonarqube, lighthouse]
      thresholds:
        coverage: 80
        complexity: 10
        maintainability: 65

πŸ§ͺ Examples

Test Generation

import { Task, TaskPriority } from 'agentic-qe';

// Generate comprehensive test suite
const generateTests = new Task(
  'test-generation',
  'Generate Tests for User Service',
  {
    sourceFile: './src/services/user-service.ts',
    framework: 'jest',
    coverage: 95,
    testTypes: ['unit', 'integration', 'property-based']
  },
  {},
  TaskPriority.HIGH
);

await fleet.submitTask(generateTests);

Quality Analysis

const qualityAnalysis = new Task(
  'quality-analysis',
  'Comprehensive Quality Check',
  {
    sourcePath: './src',
    tools: ['eslint', 'sonarqube', 'lighthouse'],
    thresholds: {
      coverage: 80,
      complexity: 10,
      security: 90
    }
  },
  {},
  TaskPriority.MEDIUM
);

Security Scanning

const securityScan = new Task(
  'security-scan',
  'SAST & DAST Security Analysis',
  {
    sourcePath: './src',
    scanTypes: ['sast', 'dast', 'dependency', 'container'],
    severity: 'high',
    compliance: ['OWASP-Top-10', 'CWE-Top-25']
  },
  {},
  TaskPriority.HIGH
);

More examples in examples/


🐳 Docker Deployment

Quick Start

# Start with SQLite (development)
docker-compose up -d

# Start with PostgreSQL (production)
docker-compose --profile postgres up -d

Production Deployment

# Configure production environment
cp .env.example .env.production
# Edit .env.production with secure credentials

# Deploy
docker-compose -f docker-compose.yml -f docker-compose.prod.yml up -d

Docker Compose Configuration

version: '3.8'
services:
  agentic-qe:
    image: agentic-qe:latest
    environment:
      - FLEET_ID=prod-fleet
      - MAX_AGENTS=50
      - DB_TYPE=postgres
    volumes:
      - ./config:/app/config
      - ./data:/app/data
    ports:
      - "3000:3000"

πŸš€ Development

Setup

# Clone repository
git clone https://github.com/proffesor-for-testing/agentic-qe.git
cd agentic-qe

# Install dependencies
npm install

# Build
npm run build

# Run tests
npm test

Available Scripts

Script Description
npm run build Compile TypeScript to JavaScript
npm run dev Development mode with hot reload
npm test Run all test suites
npm run test:unit Unit tests only
npm run test:integration Integration tests
npm run test:coverage Generate coverage report
npm run lint ESLint code checking
npm run lint:fix Auto-fix linting issues
npm run typecheck TypeScript type checking

Project Structure

agentic-qe/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ agents/          # 16 agent implementations
β”‚   β”œβ”€β”€ core/            # Core fleet management
β”‚   β”‚   β”œβ”€β”€ FleetManager.ts
β”‚   β”‚   β”œβ”€β”€ Agent.ts
β”‚   β”‚   β”œβ”€β”€ Task.ts
β”‚   β”‚   β”œβ”€β”€ EventBus.ts
β”‚   β”‚   └── MemoryManager.ts
β”‚   β”œβ”€β”€ cli/             # Command-line interface
β”‚   β”œβ”€β”€ mcp/             # Model Context Protocol server
β”‚   β”œβ”€β”€ types/           # TypeScript type definitions
β”‚   └── utils/           # Shared utilities
β”œβ”€β”€ tests/               # Comprehensive test suites
β”‚   β”œβ”€β”€ unit/
β”‚   β”œβ”€β”€ integration/
β”‚   β”œβ”€β”€ e2e/
β”‚   └── performance/
β”œβ”€β”€ examples/            # Usage examples
β”œβ”€β”€ docs/                # Documentation
β”œβ”€β”€ .claude/             # Agent & command definitions
β”‚   β”œβ”€β”€ agents/          # 16 QE agent definitions
β”‚   └── commands/        # 8 AQE slash commands
└── config/              # Configuration files

πŸ“Š Performance

  • Test Generation: 1000+ tests/minute
  • Parallel Execution: 10,000+ concurrent tests
  • Coverage Analysis: O(log n) complexity
  • Data Generation: 10,000+ records/second
  • Agent Spawning: <100ms per agent
  • Memory Efficient: <2GB for typical projects

🀝 Contributing

We welcome contributions! Please see CONTRIBUTING.md for details.

Quick Contribution Guide

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Add tests for new functionality
  5. Ensure all tests pass (npm test)
  6. Commit your changes (git commit -m 'feat: add amazing feature')
  7. Push to your branch (git push origin feature/amazing-feature)
  8. Open a Pull Request

Development Guidelines

  • Follow the existing code style
  • Write comprehensive tests
  • Update documentation
  • Use conventional commits
  • Ensure TypeScript types are accurate

πŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.


πŸ™ Acknowledgments

  • Built with TypeScript, Node.js, and SQLite
  • Inspired by autonomous agent architectures and swarm intelligence
  • Integrates with Jest, Cypress, Playwright, k6, SonarQube, and more
  • Compatible with Claude Code via Model Context Protocol (MCP)

πŸ“ž Support


πŸ—ΊοΈ Roadmap

Current (v1.0)

  • βœ… 16 specialized QE agents
  • βœ… Multi-framework test execution
  • βœ… Real-time coverage analysis
  • βœ… MCP integration

Planned (v1.1)

  • πŸ”„ Cloud deployment support
  • πŸ”„ GraphQL API
  • πŸ”„ Web dashboard
  • πŸ”„ CI/CD integrations (GitHub Actions, GitLab CI)

Future (v2.0)

  • πŸ“‹ Machine learning for test prioritization
  • πŸ“‹ Natural language test generation
  • πŸ“‹ Self-healing test suites
  • πŸ“‹ Multi-language support (Python, Java, Go)

Made with ❀️ by the Agentic QE Team

⭐ Star us on GitHub β€’ 🐦 Follow on Twitter