Package Exports
- asyncllm
- asyncllm/gemini
Readme
asyncLLM
Fetch LLM responses as an async iterable.
Features
- 🚀 Lightweight (<2KB) and dependency-free
- 🔄 Works with multiple LLM providers (OpenAI, Anthropic, Gemini, and more)
- 🌐 Browser and Node.js compatible
- 📦 Easy to use with ES modules
Installation
npm install asyncllm
Usage
Call asyncLLM()
just like you would use fetch
with any LLM provider with streaming responses.
- OpenAI Streaming. Many providers like Azure, Groq, OpenRouter, etc. follow the OpenAI API.
- Anthropic Streaming
- Gemini Streaming
The result is an async generator that yields objects with content
, tool
, and args
properties.
For example, to update the DOM with the LLM's response:
<!DOCTYPE html>
<html lang="en">
<body>
<div id="output"></div>
</body>
<script type="module">
import { asyncLLM } from "https://cdn.jsdelivr.net/npm/asyncllm@1";
const apiKey = "YOUR_API_KEY";
// Example usage with OpenAI
for await (const { content } of asyncLLM("https://api.openai.com/v1/chat/completions", {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${apiKey}`,
},
body: JSON.stringify({
model: "gpt-4",
stream: true,
messages: [{ role: "user", content: "Hello, world!" }],
}),
})) {
// Update the output in real time.
document.getElementById("output").textContent = content;
}
</script>
</html>
Node.js or bundled projects
import { asyncLLM } from "asyncllm";
// Usage is the same as in the browser example
API
asyncLLM(request: string | Request, options?: RequestInit): AsyncGenerator<LLMEvent, void, unknown>
Fetches streaming responses from LLM providers and yields events.
request
: The URL or Request object for the LLM API endpointoptions
: Optional fetch options
Returns an async generator that yields LLMEvent
objects.
LLMEvent
content
: The text content of the responsetool
: The name of the tool being called (for function calling)args
: The arguments for the tool call (for function calling) as a JSON-encoded string, e.g.{"order_id":"123456"}
message
: The raw message object from the LLM provider
Examples
OpenAI
for await (const { content } of asyncLLM("https://api.openai.com/v1/chat/completions", {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${apiKey}`,
},
body: JSON.stringify({
model: "gpt-4",
stream: true,
messages: [{ role: "user", content: "Hello world" }],
}),
})) {
console.log(content);
}
Anthropic
for await (const { content } of asyncLLM("https://api.anthropic.com/v1/messages", {
method: "POST",
headers: {
"Content-Type": "application/json",
"x-api-key": apiKey,
},
body: JSON.stringify({
model: "claude-3-haiku-20240307",
stream: true,
max_tokens: 10,
messages: [{ role: "user", content: "What is 2 + 2" }],
}),
})) {
console.log(content);
}
Gemini
The package includes a Gemini adapter that converts OpenAI-style requests to Gemini's format, allowing you to use the same code structure across providers.
import { asyncLLM } from "https://cdn.jsdelivr.net/npm/asyncllm@1";
import { gemini } from "https://cdn.jsdelivr.net/npm/asyncllm@1/dist/gemini.js";
for await (const { content } of asyncLLM(
"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-8b:streamGenerateContent?alt=sse",
{
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${apiKey}`,
},
body: JSON.stringify(
gemini({
// Use OpenAI-style parameters
model: "gemini-1.5-flash-8b",
messages: [
{ role: "system", content: "You are a helpful assistant." },
{ role: "user", content: "What is 2+2?" },
],
temperature: 0.7,
max_tokens: 100,
tools: [
{
type: "function",
function: {
name: "get_weather",
description: "Get the weather for a location",
parameters: { type: "object", properties: { location: { type: "string" } }, required: ["location"] },
},
},
],
})
),
}
)) {
console.log(content);
}
The Gemini adapter supports:
- System messages
- Multi-modal content (text, images, audio)
- Generation parameters (temperature, max_tokens, etc.)
- Function calling
- JSON mode and schema validation
- Stop sequences
- Multiple candidates
Function Calling
asyncLLM supports function calling for compatible LLM providers. Here's an example with OpenAI:
for await (const { content, tool, args } of asyncLLM("https://api.openai.com/v1/chat/completions", {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${apiKey}`,
},
body: JSON.stringify({
model: "gpt-4",
stream: true,
messages: [
{ role: "system", content: "Call get_delivery_date with the order ID." },
{ role: "user", content: "123456" },
],
tools: [
{
type: "function",
function: {
name: "get_delivery_date",
description: "Get the delivery date for a customer order.",
parameters: {
type: "object",
properties: { order_id: { type: "string", description: "The customer order ID." } },
required: ["order_id"],
},
},
},
],
}),
})) {
console.log(content, tool, args);
}
Changelog
- 1.1.0: Added Gemini adapter
- 1.0.0: Initial release with asyncLLM and LLMEvent
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
This project is licensed under the MIT License - see the LICENSE file for details.