Package Exports
- bigint-gcd
- bigint-gcd/gcd.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (bigint-gcd) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
bigint-gcd
Greater common divisor (gcd) of two BigInt values using Lehmer's GCD algorithm. See https://en.wikipedia.org/wiki/Greatest_common_divisor#Lehmer's_GCD_algorithm. On my tests it is faster than Euclidean algorithm starting from 80-bit integers.
A version 1.0.2 also has something similar to "Subquadratic GCD" (see https://gmplib.org/manual/Subquadratic-GCD ), which is faster for large bigints (> 65000 bits), it should has better time complexity in case the multiplication is subquadratic, which is true in Chrome 93.
Installation
$ npm install bigint-gcd
Usage
import gcd from './node_modules/bigint-gcd/gcd.js';
console.log(gcd(120n, 18n));
There is also an implementation of the Extended Euclidean algorithm, which is useful to find the multiplicative modular inverse:
console.log(gcd.gcdext(3n, 5n)); // [2n, -1n, 1n]
And "Half GCD" which is useful to do the Rational reconstruction: It returns the transformation matrix and the transformed values after applying about half of the Euclidean steps.
console.log(gcd.halfgcd(1000000n, 1234567n)); // [-16n, 13n, 21n, -17n, 49371n, 12361n]
Performance:
The benchmark (see benchmark.html) resutls under Chrome 131:
bit size | gcd | gmpy2 gcd | invmod | gmpy2 invert |
---|---|---|---|---|
64 | 0.000270ms | 0.00030ms | 0.000310ms | 0.00066ms |
128 | 0.001270ms | 0.00047ms | 0.001720ms | 0.00137ms |
256 | 0.002660ms | 0.00153ms | 0.003650ms | 0.00224ms |
512 | 0.005460ms | 0.00321ms | 0.007630ms | 0.00391ms |
1024 | 0.012080ms | 0.00653ms | 0.018250ms | 0.00806ms |
2048 | 0.031130ms | 0.01429ms | 0.048220ms | 0.01587ms |
4096 | 0.067870ms | 0.02979ms | 0.137700ms | 0.03590ms |
8192 | 0.174320ms | 0.06837ms | 0.341310ms | 0.09035ms |
16384 | 0.503910ms | 0.17093ms | 0.867190ms | 0.24908ms |
32768 | 1.677730ms | 0.49816ms | 2.281250ms | 0.75801ms |
65536 | 4.406250ms | 1.43795ms | 6.152340ms | 1.94962ms |
131072 | 11.828130ms | 3.98527ms | 16.937500ms | 4.98559ms |
262144 | 32.296880ms | 10.52619ms | 47.203130ms | 14.05025ms |
524288 | 86.625000ms | 28.16362ms | 123.500000ms | 38.94622ms |
1048576 | 213.312500ms | 70.89262ms | 310.062500ms | 103.71075ms |
2097152 | 519.250000ms | 177.16650ms | 773.875000ms | 269.43650ms |
4194304 | 1255.750000ms | 433.85675ms | 1870.500000ms | 658.39875ms |
8388608 | 2988.500000ms | 1069.74050ms | 4548.000000ms | 1673.88250ms |
Benchmark:
import {default as LehmersGCD} from './gcd.js';
function EuclideanGCD(a, b) {
while (b !== 0n) {
const r = a % b;
a = b;
b = r;
}
return a;
}
function ctz4(n) {
return 31 - Math.clz32(n & -n);
}
const BigIntCache = new Array(32).fill(0n).map((x, i) => BigInt(i));
function ctz1(bigint) {
return BigIntCache[ctz4(Number(BigInt.asUintN(32, bigint)))];
}
function BinaryGCD(a, b) {
if (a === 0n) {
return b;
}
if (b === 0n) {
return a;
}
const k = ctz1(a | b);
a >>= k;
b >>= k;
while (b !== 0n) {
b >>= ctz1(b);
if (a > b) {
const t = b;
b = a;
a = t;
}
b -= a;
}
return k === 0n ? a : a << k;
}
function FibonacciNumber(n) {
console.assert(n > 0);
var a = 0n;
var b = 1n;
for (var i = 1; i < n; i += 1) {
var c = a + b;
a = b;
b = c;
}
return b;
}
function RandomBigInt(size) {
if (size <= 32) {
return BigInt(Math.floor(Math.random() * 2**size));
}
const q = Math.floor(size / 2);
return (RandomBigInt(size - q) << BigInt(q)) | RandomBigInt(q);
}
function test(a, b, f) {
const g = EuclideanGCD(a, b);
const count = 100000;
console.time();
for (let i = 0; i < count; i++) {
const I = BigInt(i);
if (f(a * I, b * I) !== g * I) {
throw new Error();
}
}
console.timeEnd();
}
const a1 = RandomBigInt(128);
const b1 = RandomBigInt(128);
test(a1, b1, LehmersGCD);
// default: 426.200927734375 ms
test(a1, b1, EuclideanGCD);
// default: 1136.77294921875 ms
test(a1, b1, BinaryGCD);
// default: 1456.793212890625 ms
const a = FibonacciNumber(186n);
const b = FibonacciNumber(186n - 1n);
test(a, b, LehmersGCD);
// default: 459.796875 ms
test(a, b, EuclideanGCD);
// default: 2565.871826171875 ms
test(a, b, BinaryGCD);
// default: 1478.333984375 ms