Package Exports
- bigint-gcd
- bigint-gcd/gcd.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (bigint-gcd) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
bigint-gcd
Greater common divisor (gcd) of two BigInt values using Lehmer's GCD algorithm. See https://en.wikipedia.org/wiki/Greatest_common_divisor#Lehmer's_GCD_algorithm. On my tests it is faster than Euclidean algorithm starting from 80-bit integers.
A version 1.0.2 also has something similar to "Subquadratic GCD" (see https://gmplib.org/manual/Subquadratic-GCD ), which is faster for large bigints (> 65000 bits), it should has better time complexity in case the multiplication is subquadratic, which is true in Chrome 93.
Installation
$ npm install bigint-gcd
Usage
import bigIntGCD from './node_modules/bigint-gcd/gcd.js';
console.log(bigIntGCD(120n, 18n));
Performance:
The benchmark (see benchmark.html) resutls under Opera 87:
bit size | bigint-gcd | Julia 1.7.3 |
---|---|---|
64 | 0.000230ms | 0.000258ms |
128 | 0.001460ms | 0.000470ms |
256 | 0.002730ms | 0.001460ms |
512 | 0.005500ms | 0.003021ms |
1024 | 0.012200ms | 0.006235ms |
2048 | 0.029500ms | 0.013171ms |
4096 | 0.069000ms | 0.028502ms |
8192 | 0.176000ms | 0.066180ms |
16384 | 0.510000ms | 0.165383ms |
32768 | 1.640000ms | 0.459387ms |
65536 | 4.510000ms | 1.395260ms |
131072 | 11.640000ms | 3.836070ms |
262144 | 31.400000ms | 10.284430ms |
524288 | 85.100000ms | 27.697000ms |
1048576 | 208.600000ms | 123.401800ms |
2097152 | 501.000000ms | 185.817000ms |
4194304 | 1211.000000ms | 458.690400ms |
8388608 | 2877.000000ms | 1093.280500ms |
Benchmark:
import {default as LehmersGCD} from './gcd.js';
function EuclideanGCD(a, b) {
while (b !== 0n) {
const r = a % b;
a = b;
b = r;
}
return a;
}
function ctz4(n) {
return 31 - Math.clz32(n & -n);
}
const BigIntCache = new Array(32).fill(0n).map((x, i) => BigInt(i));
function ctz1(bigint) {
return BigIntCache[ctz4(Number(BigInt.asUintN(32, bigint)))];
}
function BinaryGCD(a, b) {
if (a === 0n) {
return b;
}
if (b === 0n) {
return a;
}
const k = ctz1(a | b);
a >>= k;
b >>= k;
while (b !== 0n) {
b >>= ctz1(b);
if (a > b) {
const t = b;
b = a;
a = t;
}
b -= a;
}
return k === 0n ? a : a << k;
}
function FibonacciNumber(n) {
console.assert(n > 0);
var a = 0n;
var b = 1n;
for (var i = 1; i < n; i += 1) {
var c = a + b;
a = b;
b = c;
}
return b;
}
function RandomBigInt(size) {
if (size <= 32) {
return BigInt(Math.floor(Math.random() * 2**size));
}
const q = Math.floor(size / 2);
return (RandomBigInt(size - q) << BigInt(q)) | RandomBigInt(q);
}
function test(a, b, f) {
const g = EuclideanGCD(a, b);
const count = 100000;
console.time();
for (let i = 0; i < count; i++) {
const I = BigInt(i);
if (f(a * I, b * I) !== g * I) {
throw new Error();
}
}
console.timeEnd();
}
const a1 = RandomBigInt(128);
const b1 = RandomBigInt(128);
test(a1, b1, LehmersGCD);
// default: 426.200927734375 ms
test(a1, b1, EuclideanGCD);
// default: 1136.77294921875 ms
test(a1, b1, BinaryGCD);
// default: 1456.793212890625 ms
const a = FibonacciNumber(186n);
const b = FibonacciNumber(186n - 1n);
test(a, b, LehmersGCD);
// default: 459.796875 ms
test(a, b, EuclideanGCD);
// default: 2565.871826171875 ms
test(a, b, BinaryGCD);
// default: 1478.333984375 ms