JSPM

  • Created
  • Published
  • Downloads 165
  • Score
    100M100P100Q70728F
  • License SEE LICENSE IN LICENSE

greater common divisor (gcd) of two BigInt values using Lehmer's GCD algorithm

Package Exports

  • bigint-gcd
  • bigint-gcd/gcd.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (bigint-gcd) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

bigint-gcd

Greater common divisor (gcd) of two BigInt values using Lehmer's GCD algorithm. See https://en.wikipedia.org/wiki/Greatest_common_divisor#Lehmer's_GCD_algorithm. On my tests it is faster than Euclidean algorithm starting from 80-bit integers.

A version 1.0.2 also has something similar to "Subquadratic GCD" (see https://gmplib.org/manual/Subquadratic-GCD ), which is faster for large bigints (> 65000 bits), it should has better time complexity in case the multiplication is subquadratic, which is true in Chrome 93.

Installation

$ npm install bigint-gcd

Usage

import bigIntGCD from './node_modules/bigint-gcd/gcd.js';

console.log(bigIntGCD(120n, 18n));

Performance:

The benchmark (see benchmark.html) resutls under Opera 87:

bit size bigint-gcd Julia 1.7.3
64 0.000230ms 0.000258ms
128 0.001460ms 0.000470ms
256 0.002730ms 0.001460ms
512 0.005500ms 0.003021ms
1024 0.012200ms 0.006235ms
2048 0.029500ms 0.013171ms
4096 0.069000ms 0.028502ms
8192 0.176000ms 0.066180ms
16384 0.510000ms 0.165383ms
32768 1.640000ms 0.459387ms
65536 4.510000ms 1.395260ms
131072 11.640000ms 3.836070ms
262144 31.400000ms 10.284430ms
524288 85.100000ms 27.697000ms
1048576 208.600000ms 123.401800ms
2097152 501.000000ms 185.817000ms
4194304 1211.000000ms 458.690400ms
8388608 2877.000000ms 1093.280500ms

Benchmark:

import {default as LehmersGCD} from './gcd.js';

function EuclideanGCD(a, b) {
  while (b !== 0n) {
    const r = a % b;
    a = b;
    b = r;
  }
  return a;
}

function ctz4(n) {
  return 31 - Math.clz32(n & -n);
}
const BigIntCache = new Array(32).fill(0n).map((x, i) => BigInt(i));
function ctz1(bigint) {
  return BigIntCache[ctz4(Number(BigInt.asUintN(32, bigint)))];
}
function BinaryGCD(a, b) {
  if (a === 0n) {
    return b;
  }
  if (b === 0n) {
    return a;
  }
  const k = ctz1(a | b);
  a >>= k;
  b >>= k;
  while (b !== 0n) {
    b >>= ctz1(b);
    if (a > b) {
      const t = b;
      b = a;
      a = t;
    }
    b -= a;
  }
  return k === 0n ? a : a << k;
}

function FibonacciNumber(n) {
  console.assert(n > 0);
  var a = 0n;
  var b = 1n;
  for (var i = 1; i < n; i += 1) {
    var c = a + b;
    a = b;
    b = c;
  }
  return b;
}

function RandomBigInt(size) {
  if (size <= 32) {
    return BigInt(Math.floor(Math.random() * 2**size));
  }
  const q = Math.floor(size / 2);
  return (RandomBigInt(size - q) << BigInt(q)) | RandomBigInt(q);
}

function test(a, b, f) {
  const g = EuclideanGCD(a, b);
  const count = 100000;
  console.time();
  for (let i = 0; i < count; i++) {
    const I = BigInt(i);
    if (f(a * I, b * I) !== g * I) {
      throw new Error();
    }
  }
  console.timeEnd();
}

const a1 = RandomBigInt(128);
const b1 = RandomBigInt(128);

test(a1, b1, LehmersGCD);
// default: 426.200927734375 ms
test(a1, b1, EuclideanGCD);
// default: 1136.77294921875 ms
test(a1, b1, BinaryGCD);
// default: 1456.793212890625 ms

const a = FibonacciNumber(186n);
const b = FibonacciNumber(186n - 1n);

test(a, b, LehmersGCD);
// default: 459.796875 ms
test(a, b, EuclideanGCD);
// default: 2565.871826171875 ms
test(a, b, BinaryGCD);
// default: 1478.333984375 ms