JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 3566
  • Score
    100M100P100Q125874F
  • License MIT

Blazing-fast binary parser builder

Package Exports

  • binary-parser-encoder

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (binary-parser-encoder) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Binary-parser-encoder

Note: This is a fork of binary-parser library. It is currently being proposed as a Pull-Request in that project.

Until the encoding feature is merged in baseline of original project, this branch is published under the name: binary-parser-encoder in npm.

Circle CI

Binary-parser is a binary parser/encoder builder for node that enables you to write efficient parsers/encoders in a simple and declarative manner.

It supports all common data types required to analyze a structured binary data. Binary-parser dynamically generates and compiles the parser and encoder code on-the-fly, which runs as fast as a hand-written parser/encoder (which takes much more time and effort to write). Supported data types are:

  • Integers (supports 8, 16, 32 bit signed- and unsigned integers)
  • Floating point numbers (supports 32 and 64 bit floating point values)
  • Bit fields (supports bit fields with length from 1 to 32 bits)
  • Strings (supports various encodings, fixed-length and variable-length, zero terminated string)
  • Arrays (supports user-defined element type, fixed-length and variable-length)
  • Choices
  • User defined types

This library's features are inspired by BinData , its syntax by binary.

Installation

Binary-parser can be installed with npm:

$ npm install binary-parser

Quick Start

  1. Create an empty Parser object with new Parser().
  2. Chain builder methods to build the desired parser and/or encoder. (See API for detailed document of each methods)
  3. Call Parser.prototype.parse with an Buffer object passed as argument.
  4. Parsed result will be returned as an object.
  5. Or call Parser.prototype.encode with an object passed as argument.
  6. Encoded result will be returned as a Buffer object.
// Module import
var Parser = require("binary-parser").Parser;

// Build an IP packet header Parser
var ipHeader = new Parser()
  .endianess("big")
  .bit4("version")
  .bit4("headerLength")
  .uint8("tos")
  .uint16("packetLength")
  .uint16("id")
  .bit3("offset")
  .bit13("fragOffset")
  .uint8("ttl")
  .uint8("protocol")
  .uint16("checksum")
  .array("src", {
    type: "uint8",
    length: 4
  })
  .array("dst", {
    type: "uint8",
    length: 4
  });

// Prepare buffer to parse.
var buf = Buffer.from("450002c5939900002c06ef98adc24f6c850186d1", "hex");

// Parse buffer and show result
console.log(ipHeader.parse(buf));

var anIpHeader = {
  version: 4,
  headerLength: 5,
  tos: 0,
  packetLength: 709,
  id: 37785,
  offset: 0,
  fragOffset: 0,
  ttl: 44,
  protocol: 6,
  checksum: 61336,
  src: [ 173, 194, 79, 108 ],
  dst: [ 133, 1, 134, 209 ] };

// Encode an IP header object and show result as hex string
console.log(ipHeader.encode(anIpHeader).toString("hex"));

API

new Parser([options])

Constructs a Parser object. Returned object represents a parser which parses nothing. options is an optional object to pass options to this declarative parser.

  • smartBufferSize The chunk size of the encoding (smart)buffer (when encoding is used) (default is 256 bytes).

parse(buffer)

Parse a Buffer object buffer with this parser and return the resulting object. When parse(buffer) is called for the first time, parser code is compiled on-the-fly and internally cached.

encode(obj)

Encode an Object object obj with this parser and return the resulting Buffer. When encode(obj) is called for the first time, encoder code is compiled on-the-fly and internally cached.

create(constructorFunction)

Set the constructor function that should be called to create the object returned from the parse method.

[u]int{8, 16, 32}{le, be}(name[, options])

Parse bytes as an integer and store it in a variable named name. name should consist only of alphanumeric characters and start with an alphabet. Number of bits can be chosen from 8, 16 and 32. Byte-ordering can be either l for little endian or b for big endian. With no prefix, it parses as a signed number, with u prefixed as an unsigned number.

var parser = new Parser()
  // Signed 32-bit integer (little endian)
  .int32le("a")
  // Unsigned 8-bit integer
  .uint8("b")
  // Signed 16-bit integer (big endian)
  .int16be("c");

bit[1-32](name[, options])

Parse bytes as a bit field and store it in variable name. There are 32 methods from bit1 to bit32 each corresponding to 1-bit-length to 32-bits-length bit field.

{float, double}{le, be}(name[, options])

Parse bytes as an floating-point value and store it in a variable named name. name should consist only of alphanumeric characters and start with an alphabet.

var parser = new Parser()
  // 32-bit floating value (big endian)
  .floatbe("a")
  // 64-bit floating value (little endian)
  .doublele("b");

string(name[, options])

Parse bytes as a string. name should consist only of alpha numeric characters and start with an alphabet. options is an object which can have the following keys:

  • encoding - (Optional, defaults to utf8) Specify which encoding to use. "utf8", "ascii", "hex" and else are valid. See Buffer.toString for more info.
  • length - (Optional) (Bytes)Length of the string. Can be a number, string or a function. Use number for statically sized arrays, string to reference another variable and function to do some calculation. Note: when encoding the string is padded with spaces (0x20) at end to fit the length requirement.
  • zeroTerminated - (Optional, defaults to false) If true, then this parser reads until it reaches zero.
  • greedy - (Optional, defaults to false) If true, then this parser reads until it reaches the end of the buffer. Will consume zero-bytes. (Note: has no effect on encoding function)
  • stripNull - (Optional, must be used with length) If true, then strip null characters from end of the string. (Note: has no effect on encoding, but when used, then the parse() and encode() functions are not the exact opposite)
  • trim - (Optional, default to false) If true, then trim() (remove leading and trailing spaces) the parsed string.
  • padding - (Optional, Only used for encoding, default to right) If left then the string will be right aligned (padding left with leading spaces) depending of the length option

buffer(name[, options])

Parse bytes as a buffer. name should consist only of alpha numeric characters and start with an alphabet. options is an object which can have the following keys:

  • clone - (Optional, defaults to false) By default, buffer(name [,options]) returns a new buffer which references the same memory as the parser input, but offset and cropped by a certain range. If this option is true, input buffer will be cloned and a new buffer referncing another memory is returned.
  • length - (either length or readUntil is required) Length of the buffer. Can be a number, string or a function. Use number for statically sized buffers, string to reference another variable and function to do some calculation.
  • readUntil - (either length or readUntil is required) If "eof", then this parser will read till it reaches end of the Buffer object. (Note: has no effect on encoding.)

array(name, options)

Parse bytes as an array. options is an object which can have the following keys:

  • type - (Required) Type of the array element. Can be a string or an user defined Parser object. If it's a string, you have to choose from [u]int{8, 16, 32}{le, be}.
  • length - (either length, lengthInBytes, or readUntil is required) Length of the array. Can be a number, string or a function. Use number for statically sized arrays.
  • lengthInBytes - (either length, lengthInBytes, or readUntil is required) Length of the array expressed in bytes. Can be a number, string or a function. Use number for statically sized arrays.
  • readUntil - (either length, lengthInBytes, or readUntil is required) If "eof", then this parser reads until the end of Buffer object. If function it reads until the function returns true. Note: When encoding, the buffer second parameter of readUntil function is the buffer already encoded before this array. So no read-ahead is possible.
  • encodeUntil - a function (item, object), only used when encoding, that replaces the readUntil function when present and allow limit the number of encoded items by returning true based on item values or other object properies.
var parser = new Parser()
  // Statically sized array
  .array("data", {
    type: "int32",
    length: 8
  })

  // Dynamically sized array (references another variable)
  .uint8("dataLength")
  .array("data2", {
    type: "int32",
    length: "dataLength"
  })

  // Dynamically sized array (with some calculation)
  .array("data3", {
    type: "int32",
    length: function() {
      return this.dataLength - 1;
    } // other fields are available through this
  })

  // Statically sized array
  .array("data4", {
    type: "int32",
    lengthInBytes: 16
  })

  // Dynamically sized array (references another variable)
  .uint8("dataLengthInBytes")
  .array("data5", {
    type: "int32",
    lengthInBytes: "dataLengthInBytes"
  })

  // Dynamically sized array (with some calculation)
  .array("data6", {
    type: "int32",
    lengthInBytes: function() {
      return this.dataLengthInBytes - 4;
    } // other fields are available through this
  })

  // Dynamically sized array (with stop-check on parsed item)
  .array("data7", {
    type: "int32",
    readUntil: function(item, buffer) {
      return item === 42;
    } // stop when specific item is parsed. buffer can be used to perform a read-ahead.
  })

  // Use user defined parser object
  .array("data8", {
    type: userDefinedParser,
    length: "dataLength"
  });

choice([name,] options)

Choose one parser from multiple parsers according to a field value and store its parsed result to key name. If name is null or omitted, the result of the chosen parser is directly embedded into the current object. options is an object which can have the following keys:

  • tag - (Required) The value used to determine which parser to use from the choices Can be a string pointing to another field or a function.
  • choices - (Required) An object which key is an integer and value is the parser which is executed when tag equals the key value.
  • defaultChoice - (Optional) In case of the tag value doesn't match any of choices, this parser is used.
var parser1 = ...;
var parser2 = ...;
var parser3 = ...;

var parser = new Parser().uint8("tagValue").choice("data", {
  tag: "tagValue",
  choices: {
    1: parser1, // When tagValue == 1, execute parser1
    4: parser2, // When tagValue == 4, execute parser2
    5: parser3 // When tagValue == 5, execute parser3
  }
});

Combining choice with array is an idiom to parse TLV-based formats.

nest([name,] options)

Execute an inner parser and store its result to key name. If name is null or omitted, the result of the inner parser is directly embedded into the current object. options is an object which can have the following keys:

  • type - (Required) A Parser object.

skip(length)

Skip parsing for length bytes. (Note: when encoding, the skipped bytes will be filled with zeros)

endianess(endianess)

Define what endianess to use in this parser. endianess can be either "little" or "big". The default endianess of Parser is set to big-endian.

var parser = new Parser()
  .endianess("little")
  // You can specify endianess explicitly
  .uint16be("a")
  .uint32le("a")
  // Or you can omit endianess (in this case, little-endian is used)
  .uint16("b")
  .int32("c");

namely(alias)

Set an alias to this parser, so there will be an opportunity to refer to it by name in methods like .array, .nest and .choice, instead of requirement to have an instance of it.

Especially, the parser may reference itself:

var stop = new Parser();

var parser = new Parser()
  .namely("self") // use 'self' to refer to the parser itself
  .uint8("type")
  .choice("data", {
    tag: "type",
    choices: {
      0: stop,
      1: "self",
      2: Parser.start()
        .nest("left", { type: "self" })
        .nest("right", { type: "self" }),
      3: Parser.start()
        .nest("one", { type: "self" })
        .nest("two", { type: "self" })
        .nest("three", { type: "self" })
    }
  });

//        2
//       / \
//      3   1
//    / | \  \
//   1  0  2  0
//  /     / \
// 0     1   0
//      /
//     0

var buffer = Buffer.from([
  2,
  /* left -> */ 3,
    /* one   -> */ 1, /* -> */ 0,
    /* two   -> */ 0,
    /* three -> */ 2,
      /* left  -> */ 1, /* -> */ 0,
      /* right -> */ 0,
  /* right -> */ 1, /* -> */ 0
]);

parser.parse(buffer);

For most of the cases there is almost no difference to the instance-way of referencing, but this method provides the way to parse recursive trees, where each node could reference the node of the same type from the inside.

Also, when you reference a parser using its instance twice, the generated code will contain two similar parts of the code included, while with the named approach, it will include a function with a name, and will just call this function for every case of usage.

NB: This style could lead to circular references and infinite recursion, to avoid this, ensure that every possible path has its end. Also, this recursion is not tail-optimized, so could lead to memory leaks when it goes too deep.

An example of referencing other patches:

// the line below registers the name 'self', so we will be able to use it in
// `twoCells` as a reference
var parser = Parser.start().namely("self");

var stop = Parser.start().namely("stop");

var twoCells = Parser.start()
  .namely("twoCells")
  .nest("left", { type: "self" })
  .nest("right", { type: "stop" });

parser.uint8("type").choice("data", {
  tag: "type",
  choices: {
    0: "stop",
    1: "self",
    2: "twoCells"
  }
});

var buffer = Buffer.from([2, /* left */ 1, 1, 0, /* right */ 0]);

parser.parse(buffer);

compile() and compileEncode()

Compile this parser/encoder on-the-fly and cache its result. Usually, there is no need to call this method directly, since it's called when parse(buffer) or encode(obj) is executed for the first time.

getCode() and getCodeEncode()

Dynamically generates the code for this parser/encoder and returns it as a string. Usually used for debugging.

Common options

These are common options that can be specified in all parsers.

  • formatter - Function that transforms the parsed value into a more desired form. formatter(value, obj, buffer, offset) → new value
    where value is the value to be formatted, obj is the current object being generated, buffer is the buffer currently beeing parsed and offset is the current offset in that buffer.

    var parser = new Parser().array("ipv4", {
      type: uint8,
      length: "4",
      formatter: function(arr, obj, buffer, offset) {
        return arr.join(".");
      }
    });
  • encoder - Function that transforms an object property into a more desired form for encoding. This is the opposite of the above formatter function.
    encoder(value) → new value
    where value is the value to be encoded (de-formatted) and obj is the object currently being encoded.

    var parser = new Parser().array("ipv4", {
      type: uint8,
      length: "4",
      formatter: function(arr, obj, buffer, offset) {
        return arr.join(".");
      },
      encoder: function(str, obj) {
        return str.split(".");
      }
    });
  • assert - Do assertion on the parsed result (useful for checking magic numbers and so on). If assert is a string or number, the actual parsed result will be compared with it with === (strict equality check), and an exception is thrown if they mismatch. On the other hand, if assert is a function, that function is executed with one argument (parsed result) and if it returns false, an exception is thrown.

    // simple maginc number validation
    var ClassFile = Parser.start()
      .endianess("big")
      .uint32("magic", { assert: 0xcafebabe });
    
    // Doing more complex assertion with a predicate function
    var parser = new Parser()
      .int16le("a")
      .int16le("b")
      .int16le("c", {
        assert: function(x) {
          return this.a + this.b === x;
        }
      });

Examples

See example for more complex examples.

Support

Please report issues to the issue tracker if you have any difficulties using this module, found a bug, or request a new feature.

Pull requests with fixes and improvements are welcomed!