JSPM

  • Created
  • Published
  • Downloads 113
  • Score
    100M100P100Q89546F
  • License MIT

BST (Binary Search Tree). Javascript & Typescript Data Structure.

Package Exports

  • bst-typed
  • bst-typed/dist/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (bst-typed) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

What

Brief

This is a standalone BST (Binary Search Tree) data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete data-structure-typed package

How

install

npm

npm i bst-typed --save

yarn

yarn add bst-typed

methods

snippet

TS

import {BST, BSTNode} from 'data-structure-typed';
// /* or if you prefer */ import {BST, BSTNode} from 'bst-typed';

const bst = new BST();
bst instanceof BST;                    // true
bst.add(11);
bst.add(3);
const idsAndValues = [15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5];
bst.addMany(idsAndValues);
bst.root instanceof BSTNode;           // true

if (bst.root) bst.root.id;             // 11

bst.size;                              // 16

bst.has(6);                            // true

const node6 = bst.get(6);
node6 && bst.getHeight(6);             // 2
node6 && bst.getDepth(6);              // 3

const nodeId10 = bst.get(10);
nodeId10?.id;                          // 10

const nodeVal9 = bst.get(9, 'val');
nodeVal9?.id;                          // 9


const leftMost = bst.getLeftMost();
leftMost?.id;                          // 1

const node15 = bst.get(15);
const minNodeBySpecificNode = node15 && bst.getLeftMost(node15);
minNodeBySpecificNode?.id;             // 12

const subTreeSum = node15 && bst.subTreeSum(15);
subTreeSum;                            // 70

const lesserSum = bst.lesserSum(10);
lesserSum;                             // 45

node15 instanceof BSTNode;             // true

const node11 = bst.get(11);
node11 instanceof BSTNode;             // true

const dfsInorderNodes = bst.DFS('in', 'node');
dfsInorderNodes[0].id;                 // 1
dfsInorderNodes[dfsInorderNodes.length - 1].id;            // 16

bst.perfectlyBalance();
bst.isPerfectlyBalanced();                                  // true

const bfsNodesAfterBalanced = bst.BFS('node');
bfsNodesAfterBalanced[0].id;                                // 8);
bfsNodesAfterBalanced[bfsNodesAfterBalanced.length - 1].id; // 16

const removed11 = bst.remove(11, true);
removed11 instanceof Array;                                 // true


if (removed11[0].deleted) removed11[0].deleted.id;          // 11

bst.isAVLBalanced();                                        // true

bst.getHeight(15);                                          // 1

const removed1 = bst.remove(1, true);
removed1 instanceof Array; // true

if (removed1[0].deleted) removed1[0].deleted.id;            // 1

bst.isAVLBalanced();                                        // true

bst.getHeight();                                            // 4

const removed4 = bst.remove(4, true);
removed4 instanceof Array;                                   // true

if (removed4[0].deleted) removed4[0].deleted.id;            // 4
bst.isAVLBalanced();                                        // true
bst.getHeight();                                            // 4

const removed10 = bst.remove(10, true);

if (removed10[0].deleted) removed10[0].deleted.id;           // 10
bst.isAVLBalanced();                                         // false
bst.getHeight();                                             // 4

const removed15 = bst.remove(15, true);

if (removed15[0].deleted) removed15[0].deleted.id;           // 15

bst.isAVLBalanced();                                         // true
bst.getHeight();                                             // 3

const removed5 = bst.remove(5, true);

if (removed5[0].deleted) removed5[0].deleted.id;              // 5

bst.isAVLBalanced();                                          // true
bst.getHeight();                                              // 3

const removed13 = bst.remove(13, true);
if (removed13[0].deleted) removed13[0].deleted.id;            // 13
bst.isAVLBalanced();                                          // true
bst.getHeight();                                              // 3

const removed3 = bst.remove(3, true);
if (removed3[0].deleted) removed3[0].deleted.id;               // 3
bst.isAVLBalanced();                                           // false
bst.getHeight();                                               // 3

const removed8 = bst.remove(8, true);
if (removed8[0].deleted) removed8[0].deleted.id;               // 8
bst.isAVLBalanced();                                           // true
bst.getHeight();                                               // 3

const removed6 = bst.remove(6, true);
if (removed6[0].deleted) removed6[0].deleted.id;               // 6
bst.remove(6, true).length;                                    // 0
bst.isAVLBalanced();                                           // false
bst.getHeight();                                               // 3

const removed7 = bst.remove(7, true);
if (removed7[0].deleted) removed7[0].deleted.id;               // 7
bst.isAVLBalanced();                                           // false
bst.getHeight();                                               // 3

const removed9 = bst.remove(9, true);
if (removed9[0].deleted) removed9[0].deleted.id;               // 9
bst.isAVLBalanced();                                           // false
bst.getHeight();                                               // 3

const removed14 = bst.remove(14, true);
if (removed14[0].deleted) removed14[0].deleted.id;             // 14
bst.isAVLBalanced();                                           // false
bst.getHeight();                                               // 2

bst.isAVLBalanced();                                           // false

const bfsIDs = bst.BFS();
bfsIDs[0];                                                     // 2
bfsIDs[1];                                                     // 12
bfsIDs[2];                                                     // 16

const bfsNodes = bst.BFS('node');
bfsNodes[0].id;                                                // 2
bfsNodes[1].id;                                                // 12
bfsNodes[2].id;                                                // 16

JS

const {BST, BSTNode} = require('data-structure-typed');
// /* or if you prefer */ const {BST, BSTNode} = require('bst-typed');

const bst = new BST();
bst instanceof BST;                    // true
bst.add(11);
bst.add(3);
const idsAndValues = [15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5];
bst.addMany(idsAndValues);
bst.root instanceof BSTNode;           // true

if (bst.root) bst.root.id;             // 11

bst.size;                              // 16

bst.has(6);                            // true

const node6 = bst.get(6);
node6 && bst.getHeight(6);             // 2
node6 && bst.getDepth(6);              // 3

const nodeId10 = bst.get(10);
nodeId10?.id;                          // 10

const nodeVal9 = bst.get(9, 'val');
nodeVal9?.id;                          // 9


const leftMost = bst.getLeftMost();
leftMost?.id;                          // 1

const node15 = bst.get(15);
const minNodeBySpecificNode = node15 && bst.getLeftMost(node15);
minNodeBySpecificNode?.id;             // 12

const subTreeSum = node15 && bst.subTreeSum(15);
subTreeSum;                            // 70

const lesserSum = bst.lesserSum(10);
lesserSum;                             // 45

node15 instanceof BSTNode;             // true

const node11 = bst.get(11);
node11 instanceof BSTNode;             // true

const dfsInorderNodes = bst.DFS('in', 'node');
dfsInorderNodes[0].id;                 // 1
dfsInorderNodes[dfsInorderNodes.length - 1].id;            // 16

bst.perfectlyBalance();
bst.isPerfectlyBalanced();                                  // true

const bfsNodesAfterBalanced = bst.BFS('node');
bfsNodesAfterBalanced[0].id;                                // 8);
bfsNodesAfterBalanced[bfsNodesAfterBalanced.length - 1].id; // 16

const removed11 = bst.remove(11, true);
removed11 instanceof Array;                                 // true


if (removed11[0].deleted) removed11[0].deleted.id;          // 11

bst.isAVLBalanced();                                        // true

bst.getHeight(15);                                          // 1

const removed1 = bst.remove(1, true);
removed1 instanceof Array; // true

if (removed1[0].deleted) removed1[0].deleted.id;            // 1

bst.isAVLBalanced();                                        // true

bst.getHeight();                                            // 4

const removed4 = bst.remove(4, true);
removed4 instanceof Array;                                   // true

if (removed4[0].deleted) removed4[0].deleted.id;            // 4
bst.isAVLBalanced();                                        // true
bst.getHeight();                                            // 4

const removed10 = bst.remove(10, true);

if (removed10[0].deleted) removed10[0].deleted.id;           // 10
bst.isAVLBalanced();                                         // false
bst.getHeight();                                             // 4

const removed15 = bst.remove(15, true);

if (removed15[0].deleted) removed15[0].deleted.id;           // 15

bst.isAVLBalanced();                                         // true
bst.getHeight();                                             // 3

const removed5 = bst.remove(5, true);

if (removed5[0].deleted) removed5[0].deleted.id;              // 5

bst.isAVLBalanced();                                          // true
bst.getHeight();                                              // 3

const removed13 = bst.remove(13, true);
if (removed13[0].deleted) removed13[0].deleted.id;            // 13
bst.isAVLBalanced();                                          // true
bst.getHeight();                                              // 3

const removed3 = bst.remove(3, true);
if (removed3[0].deleted) removed3[0].deleted.id;               // 3
bst.isAVLBalanced();                                           // false
bst.getHeight();                                               // 3

const removed8 = bst.remove(8, true);
if (removed8[0].deleted) removed8[0].deleted.id;               // 8
bst.isAVLBalanced();                                           // true
bst.getHeight();                                               // 3

const removed6 = bst.remove(6, true);
if (removed6[0].deleted) removed6[0].deleted.id;               // 6
bst.remove(6, true).length;                                    // 0
bst.isAVLBalanced();                                           // false
bst.getHeight();                                               // 3

const removed7 = bst.remove(7, true);
if (removed7[0].deleted) removed7[0].deleted.id;               // 7
bst.isAVLBalanced();                                           // false
bst.getHeight();                                               // 3

const removed9 = bst.remove(9, true);
if (removed9[0].deleted) removed9[0].deleted.id;               // 9
bst.isAVLBalanced();                                           // false
bst.getHeight();                                               // 3

const removed14 = bst.remove(14, true);
if (removed14[0].deleted) removed14[0].deleted.id;             // 14
bst.isAVLBalanced();                                           // false
bst.getHeight();                                               // 2

bst.isAVLBalanced();                                           // false

const bfsIDs = bst.BFS();
bfsIDs[0];                                                     // 2
bfsIDs[1];                                                     // 12
bfsIDs[2];                                                     // 16

const bfsNodes = bst.BFS('node');
bfsNodes[0].id;                                                // 2
bfsNodes[1].id;                                                // 12
bfsNodes[2].id;                                                // 16

API docs & Examples

API Docs

Live Examples

Examples Repository

Data Structures

Data Structure Unit Test Performance Test API Documentation Implemented
Binary Tree Binary Tree
Binary Search Tree (BST) BST
AVL Tree AVLTree
Tree Multiset TreeMultiset
Segment Tree SegmentTree
Binary Indexed Tree BinaryIndexedTree
Graph AbstractGraph
Directed Graph DirectedGraph
Undirected Graph UndirectedGraph
Linked List SinglyLinkedList
Singly Linked List SinglyLinkedList
Doubly Linked List DoublyLinkedList
Queue Queue
Object Deque ObjectDeque
Array Deque ArrayDeque
Stack Stack
Coordinate Set CoordinateSet
Coordinate Map CoordinateMap
Heap Heap
Priority Queue PriorityQueue
Max Priority Queue MaxPriorityQueue
Min Priority Queue MinPriorityQueue
Trie Trie

Why

Complexities

performance of Big O

Big O Notation Type Computations for 10 elements Computations for 100 elements Computations for 1000 elements
O(1) Constant 1 1 1
O(log N) Logarithmic 3 6 9
O(N) Linear 10 100 1000
O(N log N) n log(n) 30 600 9000
O(N^2) Quadratic 100 10000 1000000
O(2^N) Exponential 1024 1.26e+29 1.07e+301
O(N!) Factorial 3628800 9.3e+157 4.02e+2567

Data Structure Complexity

Data Structure Access Search Insertion Deletion Comments
Array 1 n n n
Stack n n 1 1
Queue n n 1 1
Linked List n n 1 n
Hash Table - n n n In case of perfect hash function costs would be O(1)
Binary Search Tree n n n n In case of balanced tree costs would be O(log(n))
B-Tree log(n) log(n) log(n) log(n)
Red-Black Tree log(n) log(n) log(n) log(n)
AVL Tree log(n) log(n) log(n) log(n)
Bloom Filter - 1 1 - False positives are possible while searching

Sorting Complexity

Name Best Average Worst Memory Stable Comments
Bubble sort n n2 n2 1 Yes
Insertion sort n n2 n2 1 Yes
Selection sort n2 n2 n2 1 No
Heap sort n log(n) n log(n) n log(n) 1 No
Merge sort n log(n) n log(n) n log(n) n Yes
Quick sort n log(n) n log(n) n2 log(n) No Quicksort is usually done in-place with O(log(n)) stack space
Shell sort n log(n) depends on gap sequence n (log(n))2 1 No
Counting sort n + r n + r n + r n + r Yes r - biggest number in array
Radix sort n * k n * k n * k n + k Yes k - length of longest key

overview diagram

complexities

complexities of data structures