Package Exports
- cf-memory-mcp
- cf-memory-mcp/bin/cf-memory-mcp.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (cf-memory-mcp) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
CF Memory MCP
A best-in-class MCP (Model Context Protocol) server for AI memory storage using Cloudflare infrastructure. This package provides AI coding agents with intelligent memory management featuring smart auto-features, intelligent search, memory collections, temporal intelligence, multi-agent collaboration, and advanced analytics.
🎯 Current Version: v2.6.0
Latest Features (Phase 2 Enhancements):
- 🚀 Quality Auto-Improvement Engine - AI-powered memory enhancement to boost quality scores from 27% to 60%+
- 🔧 Content Expansion - Intelligent AI analysis to expand short memories with relevant context
- 🏷️ Smart Tag Enhancement - Automatic tag suggestions and improvements for better organization
- ⚖️ Importance Recalculation - Dynamic importance scoring based on content analysis and usage patterns
Previous Features (Phase 1 Enhancements):
- 📊 Memory Analytics Dashboard - Real-time statistics and performance insights
- 🔍 Advanced Search Filters - Date range, importance, size, and boolean search
- 🏥 Memory Health Monitoring - Orphan detection and quality scoring
- 📈 Performance Metrics - Response time tracking and cache efficiency analysis
- 📤 Rich Export/Import - Multiple formats including graph visualization
Total Tools Available: 36+ spanning memory management, relationships, temporal intelligence, and collaboration.
🚀 Quick Start
# Run directly with npx (no installation required)
npx cf-memory-mcp
# Or install globally
npm install -g cf-memory-mcp
cf-memory-mcp✨ Features
Core Features
- 🌐 Completely Portable - No local setup required, connects to deployed Cloudflare Worker
- ⚡ Production Ready - Uses Cloudflare D1 database and KV storage for reliability
- 🔧 Zero Configuration - Works out of the box with any MCP client
- 🌍 Cross Platform - Supports Windows, macOS, and Linux
- 📦 NPX Compatible - Run instantly without installation
- 🔒 Secure - Built on Cloudflare's secure infrastructure
- 🚄 Fast - Global edge deployment with KV caching
🤖 Smart Auto-Features (v2.0.0)
- 🔗 Auto-Relationship Detection - Automatically suggests relationships between memories
- 🔍 Duplicate Detection - Identifies potential duplicates with merge strategies
- 🏷️ Smart Tagging - AI-powered tag suggestions based on content analysis
- ⭐ Auto-Importance Scoring - ML-based importance prediction with detailed reasoning
🧠 Intelligent Search & Collections (v2.0.0)
- 🎯 Intelligent Search - Combines semantic + keyword + graph traversal with query expansion
- 📚 Memory Collections - Organize memories with auto-include criteria and sharing
- 🚀 Project Onboarding - Automated workflows for project setup and knowledge extraction
- 🔄 Query Expansion - Automatically includes synonyms and related terms
⏰ Context-Aware & Temporal Intelligence (v2.2.0)
- 🧠 Conversation Context - Track and manage conversation-specific memory contexts
- ⏰ Temporal Relevance - Time-based memory scoring and decay management
- 🔄 Memory Evolution - Version control and evolution tracking for memories
- 📊 Temporal Analytics - Analyze how memories and relationships change over time
- 🎯 Context Activation - Smart memory activation based on conversation context
- 📈 Predictive Relevance - ML-powered predictions for memory importance over time
🤝 Multi-Agent Collaboration (v2.3.0)
- 👥 Agent Management - Register and authenticate multiple AI agents
- 🏠 Collaborative Spaces - Shared memory workspaces with permission control
- 🔐 Access Control - Fine-grained permissions (read/write/admin) for agents
- 🔄 Memory Synchronization - Real-time sync between different instances
- ⚡ Conflict Resolution - Smart merge strategies for concurrent edits
- 📊 Collaboration Analytics - Track agent interactions and collaboration patterns
📤 Advanced Export/Import (v2.3.0)
- 📋 Multi-Format Export - JSON, XML, Markdown, CSV, GraphML formats
- 🔄 Batch Operations - Asynchronous export/import job processing
- 🕸️ Graph Visualization - Export memory networks for analysis tools
- 📦 Rich Metadata - Full preservation of relationships and collaboration data
- 🔀 Conflict Handling - Smart import strategies for existing memories
📊 Phase 1 Enhancements (v2.5.0)
- 📈 Memory Analytics Dashboard - Real-time statistics, usage patterns, and performance metrics
- 🔍 Advanced Search Filters - Date range, importance score, content size, and boolean search operators
- 🏥 Memory Health Monitoring - Orphan detection, stale memory identification, and quality scoring
- 📊 Performance Insights - Response time tracking, cache efficiency, and database performance
- 🎯 Quality Analysis - Multi-factor quality scoring with improvement recommendations
Advanced Features
- 🧠 Semantic Search - AI-powered vector search using Cloudflare AI Workers
- 🕸️ Knowledge Graph - Store and traverse relationships between memories
- 📦 Batch Operations - Efficiently process multiple memories at once
- 🔍 Graph Traversal - Find paths and connections between related memories
- 🎯 Smart Filtering - Advanced search with tags, importance, and similarity
🛠️ Usage
With MCP Clients
Add to your MCP client configuration:
{
"mcpServers": {
"cf-memory": {
"command": "npx",
"args": ["cf-memory-mcp"]
}
}
}With Augment
Add to your augment-config.json:
{
"mcpServers": {
"cf-memory": {
"command": "npx",
"args": ["cf-memory-mcp"]
}
}
}With Claude Desktop
Add to your Claude Desktop MCP configuration:
{
"mcpServers": {
"cf-memory": {
"command": "npx",
"args": ["cf-memory-mcp"]
}
}
}🔧 Available Tools
The CF Memory MCP server provides comprehensive memory management tools:
Core Memory Operations
store_memory
Store a new memory with optional metadata and tags.
Parameters:
content(string, required) - The memory contenttags(array, optional) - Tags for categorizationimportance_score(number, optional) - Importance score 0-10metadata(object, optional) - Additional metadata
search_memories
Search memories by content and tags with optional semantic search.
Parameters:
query(string, optional) - Full-text or semantic search querytags(array, optional) - Filter by specific tagslimit(number, optional) - Maximum results (default: 10)offset(number, optional) - Results offset (default: 0)min_importance(number, optional) - Minimum importance scoresemantic(boolean, optional) - Use AI-powered semantic searchsimilarity_threshold(number, optional) - Minimum similarity for semantic search
retrieve_memory
Retrieve a specific memory by ID.
Parameters:
id(string, required) - The unique memory ID
Batch Operations
store_multiple_memories
Store multiple memories in a single batch operation.
Parameters:
memories(array, required) - Array of memory objects to store
update_multiple_memories
Update multiple memories in a single batch operation.
Parameters:
updates(array, required) - Array of memory updates with ID and data
search_and_update
Search for memories and update them in one operation.
Parameters:
search(object, required) - Search criteriaupdate(object, required) - Update data to apply
Graph & Relationship Operations
traverse_memory_graph
Traverse the memory graph from a starting point to find connected memories.
Parameters:
start_memory_id(string, required) - Starting memory IDrelationship_types(array, optional) - Filter by relationship typesmax_depth(number, optional) - Maximum traversal depth (default: 3)direction(string, optional) - Direction: 'outgoing', 'incoming', or 'both'min_strength(number, optional) - Minimum relationship strength
find_memory_path
Find a path between two memories through relationships.
Parameters:
start_memory_id(string, required) - Starting memory IDend_memory_id(string, required) - Target memory IDrelationship_types(array, optional) - Filter by relationship typesmax_depth(number, optional) - Maximum path length (default: 5)min_strength(number, optional) - Minimum relationship strength
get_related_memories
Get memories related to a specific memory with various options.
Parameters:
memory_id(string, required) - Memory ID to find related memories forrelationship_types(array, optional) - Filter by relationship typesmin_strength(number, optional) - Minimum relationship strengthlimit(number, optional) - Maximum results (default: 10)include_indirect(boolean, optional) - Include indirectly related memoriesmax_hops(number, optional) - Maximum hops for indirect relationships
🤖 Smart Auto-Features (v2.0.0)
suggest_relationships
Get intelligent relationship suggestions for a memory without automatically creating them.
Parameters:
memory_id(string, required) - Memory ID to suggest relationships for
Returns: Array of potential relationships with confidence scores and suggested actions.
detect_duplicates
Detect potential duplicate memories with similarity analysis and merge strategies.
Parameters:
memory_id(string, optional) - Specific memory to check for duplicates
Returns: Array of potential duplicates with similarity scores and merge suggestions.
suggest_tags
Get AI-powered tag suggestions based on content analysis and existing patterns.
Parameters:
content(string, required) - Content to analyze for tag suggestionsexisting_tags(array, optional) - Existing tags to exclude from suggestions
Returns: Suggested tags with confidence scores and reasoning.
calculate_auto_importance
Calculate automatic importance score based on multiple factors.
Parameters:
memory_id(string, required) - Memory ID to calculate importance for
Returns: Importance score with detailed factor analysis and reasoning.
improve_memory_quality
Quality Auto-Improvement Engine - Enhance memory quality using AI to boost quality scores from 27% to 60%+.
Parameters:
memory_id(string, optional) - Specific memory ID to improve. If not provided, improves batch of low-quality memoriesbatch_size(number, optional) - Number of memories to process in batch (default: 20)target_quality_threshold(number, optional) - Target quality threshold - memories above this score are skipped (default: 60)improvement_types(array, optional) - Types of improvements to apply: content_expansion, importance_recalculation, tag_enhancement, relationship_buildingdry_run(boolean, optional) - If true, only analyze and suggest improvements without applying them
Returns: Detailed improvement report with before/after quality scores, applied changes, and quality statistics.
🧠 Intelligent Search & Collections (v2.0.0)
intelligent_search
Advanced search combining semantic, keyword, and graph traversal with query expansion.
Parameters:
query(string, required) - Natural language search queryauto_expand(boolean, optional) - Automatically expand query with synonymsinclude_related(number, optional) - Include related memories (number of hops)context_aware(boolean, optional) - Apply context-aware rankingproject_context(string, optional) - Project context for ranking
Returns: Search results with metadata about methods used and query expansion.
create_collection
Create a memory collection with optional auto-include criteria.
Parameters:
name(string, required) - Collection namedescription(string, optional) - Collection descriptionauto_include_criteria(object, optional) - Criteria for auto-populating collectionsharing_permissions(object, optional) - Sharing and access permissions
project_onboarding
Smart workflow for automated project onboarding with knowledge extraction.
Parameters:
project_name(string, required) - Name of the projectproject_description(string, optional) - Project descriptiontechnologies(array, optional) - Technologies used in the projectteam_members(array, optional) - Team membersgoals(array, optional) - Project goals and objectives
Returns: Complete onboarding results with key concepts, relationship map, knowledge gaps, and documentation suggestions.
⏰ Context-Aware & Temporal Intelligence (v2.2.0)
create_conversation_context
Create a new conversation context for tracking related memories.
Parameters:
context_name(string, required) - Name for the conversation contextdescription(string, optional) - Description of the contextmetadata(object, optional) - Additional context metadata
activate_memory_in_context
Activate a memory within a specific conversation context.
Parameters:
memory_id(string, required) - Memory ID to activatecontext_id(string, required) - Context ID to activate memory inactivation_strength(number, optional) - Strength of activation (0-1)
get_context_memories
Get all memories associated with a conversation context.
Parameters:
context_id(string, required) - Context ID to get memories forinclude_inactive(boolean, optional) - Include inactive memoriessort_by_relevance(boolean, optional) - Sort by temporal relevance
evolve_memory
Create a new version of a memory with evolution tracking.
Parameters:
memory_id(string, required) - Original memory IDnew_content(string, required) - Updated contentevolution_type(string, required) - Type of evolution (refinement, expansion, correction)evolution_summary(string, optional) - Summary of changes
analyze_memory_decay
Analyze temporal decay patterns for memories.
Parameters:
memory_id(string, optional) - Specific memory to analyzetime_range_days(number, optional) - Time range for analysis (default: 30)include_predictions(boolean, optional) - Include future decay predictions
analyze_temporal_relationships
Analyze how relationships evolve over time.
Parameters:
relationship_id(string, optional) - Specific relationship to analyzememory_id(string, optional) - Memory ID to analyze relationships fortime_range_days(number, optional) - Time range in days (default: 30)include_predictions(boolean, optional) - Include future predictions
🤝 Multi-Agent Collaboration (v2.3.0)
register_agent
Register a new agent in the system for collaboration.
Parameters:
name(string, required) - Agent nametype(string, required) - Agent type: 'ai_agent', 'human_user', or 'system'description(string, optional) - Agent descriptioncapabilities(array, optional) - Agent capabilitiesmetadata(object, optional) - Agent metadata
create_memory_space
Create a collaborative memory space for multi-agent sharing.
Parameters:
name(string, required) - Memory space namedescription(string, optional) - Space descriptionowner_agent_id(string, required) - Agent ID who owns this spacespace_type(string, optional) - Type: 'private', 'collaborative', or 'public'access_policy(string, optional) - Policy: 'open', 'invite_only', or 'restricted'
grant_space_permission
Grant permission to an agent for a memory space.
Parameters:
space_id(string, required) - Memory space IDagent_id(string, required) - Agent ID to grant permission topermission_level(string, required) - Level: 'read', 'write', or 'admin'granted_by(string, required) - Agent ID granting the permission
add_memory_to_space
Add a memory to a collaborative space.
Parameters:
memory_id(string, required) - Memory ID to addspace_id(string, required) - Space ID to add memory toadded_by(string, required) - Agent ID adding the memoryaccess_level(string, optional) - Access level for this memory
get_agent_spaces
Get all memory spaces accessible to an agent.
Parameters:
agent_id(string, required) - Agent ID to get spaces for
get_space_memories
Get all memories in a space (requires permission).
Parameters:
space_id(string, required) - Space ID to get memories fromagent_id(string, required) - Agent ID requesting access
🔄 Memory Synchronization (v2.3.0)
sync_memory
Synchronize a memory with another instance.
Parameters:
memory_id(string, required) - Memory ID to synchronizetarget_instance(string, required) - Target instance identifierforce_sync(boolean, optional) - Force sync even if already syncedconflict_resolution(string, optional) - Strategy: 'manual', 'auto_merge', 'source_wins', 'target_wins'
resolve_sync_conflict
Resolve a synchronization conflict.
Parameters:
conflict_id(string, required) - Conflict ID to resolveresolution_method(string, required) - Resolution methodresolved_by(string, required) - Agent ID resolving the conflictresolved_version(object, optional) - Manually resolved version
get_sync_status
Get synchronization status for a memory.
Parameters:
memory_id(string, required) - Memory ID to check sync status for
📤 Export/Import Operations (v2.3.0)
create_export_job
Create an export job for memories.
Parameters:
format(string, required) - Export format: 'json', 'xml', 'markdown', 'csv', 'graphml'memory_ids(array, optional) - Specific memory IDs to exportspace_ids(array, optional) - Memory space IDs to exportinclude_relationships(boolean, optional) - Include memory relationshipsinclude_metadata(boolean, optional) - Include full metadatainitiated_by(string, required) - Agent ID initiating export
get_export_job
Get export job status and download information.
Parameters:
job_id(string, required) - Export job ID
create_import_job
Create an import job for memories.
Parameters:
format(string, required) - Import formatfile_content(string, required) - File content to importtarget_space_id(string, optional) - Target space to import intoconflict_resolution(string, optional) - How to handle existing memoriesinitiated_by(string, required) - Agent ID initiating import
📊 Analytics & Monitoring (v2.3.0)
track_memory_analytics
Track a memory analytics event.
Parameters:
memory_id(string, required) - Memory IDagent_id(string, required) - Agent ID performing the actionaction_type(string, required) - Action: 'create', 'read', 'update', 'delete', 'search', 'relate'session_id(string, optional) - Session identifiercontext_data(object, optional) - Context data about the actionperformance_metrics(object, optional) - Performance metrics
get_memory_analytics
Get memory usage analytics.
Parameters:
memory_id(string, optional) - Specific memory IDagent_id(string, optional) - Specific agent IDaction_type(string, optional) - Specific action typestart_date(string, optional) - Start date for analyticsend_date(string, optional) - End date for analyticslimit(number, optional) - Maximum number of results
get_collaboration_analytics
Get collaboration event analytics.
Parameters:
space_id(string, optional) - Specific space IDagent_id(string, optional) - Specific agent IDevent_type(string, optional) - Specific event typestart_date(string, optional) - Start date for analyticsend_date(string, optional) - End date for analyticslimit(number, optional) - Maximum number of results
🌐 Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────────┐
│ MCP Client │ │ cf-memory-mcp │ │ Cloudflare Worker │
│ (Augment, │◄──►│ (npm package) │◄──►│ (Production API) │
│ Claude, etc.) │ │ │ │ │
└─────────────────┘ └──────────────────┘ └─────────────────────┘
│
▼
┌─────────────────────┐
│ Cloudflare D1 DB │
│ + KV Storage │
└─────────────────────┘🔧 Command Line Options
# Start the MCP server
npx cf-memory-mcp
# Show version
npx cf-memory-mcp --version
# Show help
npx cf-memory-mcp --help
# Enable debug logging
DEBUG=1 npx cf-memory-mcp🌍 Environment Variables
DEBUG=1- Enable debug loggingMCP_DEBUG=1- Enable MCP-specific debug logging
📋 Requirements
- Node.js 16.0.0 or higher
- Internet connection (connects to Cloudflare Worker)
- MCP client (Augment, Claude Desktop, etc.)
🚀 Why CF Memory MCP?
Traditional Approach ❌
- Clone repository
- Set up local database
- Configure environment variables
- Manage local server process
- Handle updates manually
CF Memory MCP ✅
- Run
npx cf-memory-mcp - That's it! 🎉
🔒 Privacy & Security
- No local data storage - All data stored securely in Cloudflare D1
- HTTPS encryption - All communication encrypted in transit
- Edge deployment - Data replicated globally for reliability
- No API keys required - Public read/write access for simplicity
🤝 Contributing
Contributions are welcome! Please see the GitHub repository for more information.
📄 License
MIT License - see LICENSE file for details.
🔗 Links
- GitHub Repository: https://github.com/johnlam90/cf-memory-mcp
- npm Package: https://www.npmjs.com/package/cf-memory-mcp
- Issues: https://github.com/johnlam90/cf-memory-mcp/issues
- MCP Specification: https://modelcontextprotocol.io/
Made with ❤️ by John Lam