Package Exports
- cfs.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (cfs.js) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
cfa.js
still in beta - ironing some bugs... readme is due to chcnges
Example
Calculate rolling return in an array
rolling return day by day (you can input any number of days - lower than array length of course)
let array = [1, 1.02, 1.03, 1, 1.03, 1.05]
cfa.yield_array(array2, 1)
returns:
[
0.020000000000000018,
0.009803921568627416,
-0.029126213592232997,
0.030000000000000027,
0.01941747572815533
]
TIME VALUE OF MONEY FUNCTIONS
Future value
cfa.fv(pv, r, n, m)
Present value
cfa.pv(fv,r,n,m)
Continous compounding
cfa.fv_continous(pv, r, n)
Effective Annual Rate
cfa.ear(r,m)
Continous Effective Annual Rate
cfa.ear_continous(r)
Future Value of Ordinary Annuity
cfa.fv_annuity_ordinary(a,r,n)
Present Value of Ordinary Annuity
cfa.pv_annuity_ordinary(a,r,n)
Future Value of Unequal Cash Flows
cfa.fv_unequal_cf(array, r)
Present Value of Unequal Cash Flows
cfa.pv_unequal_cf(array, r)
Present Value of Perpetuity
cfa.pv_perpetuity(a, r)
Net Present Value
cfa.npv(array, r)
Internal Rate of Return
cfa.npv(array)
returns object:
{rate, NPV}
for instance:
let array = [-50, 20, 10, 5, 30, 50]
cfa.irr(array)
returns:
{ rate: 27.860000000001556, NPV: 0.007680729691662336 }
Statistics
Median
cfa.median(array)
Mode - Single modality so far
cfa.mode(array)
Weighted Mean
cfa.weighted_mean(array)
Geometric Mean
cfa.geometric_mean(array)
Harmonic Mean
cfa.harmonic_mean(array)
Covariance
cfa.covariance(array_X, array_Y)
Sample variance
cfa.sample_variance(array)
Sample standard deviation
cfa.standard_deviation(array)
Sample correlation
cfa.sample_correlation(array_X, array_Y)
Significance of correlation coefficient
cfa.corr_significance(array_X, array_Y)
Linear regression
Mean Absolute Deviation
cfa.mad(array)
Semivariance
cfa.semivariance(array)
Semideviation
cfa.semideviation(array)
Target semivariance
cfa.target_semivariance(array, target)
Target Semideviation
cfa.target_semideviation(array, target)
Coefficient of variation
cfa.cv(array)
Sharpe Ratio
cfa.sharpe(array_portfolio, array_rf)
Sample Skewness
cfa.sample_skewness(array)
Sample Kurtosis
cfa.sample_kurtosis(array)
Probabililty
Covariance Matrix - takes array of arrays
cfa.covariance_matrix(array)
Correlation Matrix - takes array of arrays
cfa.correlation_matrix(array)
HELPER FUNCTIONS
Yield
cfa.yield(a,b)
Average
cfa.average(array)
Array parse to float
cfa.float_array(array)
Sum of array
cfa.sum(array)
Array - sort descending
cfa.sort_desc(array)
Array - Extent
cfa.extent(array)
MAX
cfa.max(array)
MIN
cfa.min(array)
Range
cfa.range(array)
k days yield array
cfa.yield_array(array, days)
Rolling function with callback
cfa.rolling(array, days, callback)