JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 3
  • Score
    100M100P100Q58173F
  • License MIT

CSVLOD-AI MCP Server with Agent Swarm Coordination - Revolutionary multi-agent orchestration for sovereign AI development

Package Exports

  • csvlod-ai-mcp-server
  • csvlod-ai-mcp-server/dist/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (csvlod-ai-mcp-server) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

CSVLOD-AI MCP Server

The CSVLOD-AI MCP (Model Context Protocol) Server is a meta-protocol implementation that brings the revolutionary efficiency of CSVLOD-AI Framework to the MCP ecosystem. It embodies sovereignty through local-first architecture while orchestrating other MCP servers intelligently.

๐Ÿš€ Features

  • Context Engineering Tools: Initialize, validate, and analyze CSVLOD contexts
  • Local MCP Registry: Mirror and manage MCP servers locally for sovereignty
  • Intelligent Orchestration: Automatically select and coordinate MCP servers
  • Zero Remote Dependencies: Everything runs locally after initial setup
  • 90% Efficiency Applied: CSVLOD optimization principles for MCP overhead

๐Ÿ“ฆ Installation

npm install -g csvlod-ai-mcp-server

Docker

docker pull hamzaamjad/csvlod-mcp-server:latest

From Source

git clone https://github.com/hamzaamjad/csvlod-ai-framework
cd mcp-server
npm install
npm run build

๐Ÿ› ๏ธ Available Tools

CSVLOD Tools

  1. csvlod_init - Initialize CSVLOD framework in any project

    {
      "projectPath": "/path/to/project",
      "type": "basic" | "enterprise" | "minimal"
    }
  2. csvlod_validate - Validate CSVLOD compliance

    {
      "path": "/path/to/validate",
      "strict": true
    }
  3. csvlod_generate - Generate CSVLOD components

    {
      "component": "context" | "manifest" | "prompt" | "structure",
      "path": "/target/path",
      "options": {
        "framework": "react",
        "language": "typescript"
      }
    }
  4. csvlod_analyze - Analyze context effectiveness

    {
      "path": "/path/to/analyze",
      "includeMetrics": true
    }

MCP Registry Tools

  1. mcp_registry - Manage local MCP registry

    {
      "action": "sync" | "search" | "install" | "list",
      "query": "github-mcp",
      "localOnly": true
    }
  2. mcp_orchestrate - Intelligently orchestrate MCP servers

    {
      "task": "Search for TODOs in my codebase and create GitHub issues",
      "preferLocal": true,
      "ephemeral": true
    }

๐Ÿ—๏ธ Architecture

Local-First Design

All MCP servers are cached locally in ~/.csvlod-ai/ ensuring:

  • Complete offline functionality
  • Data sovereignty
  • No external dependencies
  • Privacy by default

Context Engineering

The server applies CSVLOD principles to MCP:

  • Rich context over complex prompts
  • Structure enables capability
  • Progressive enhancement
  • Self-improving systems

๐Ÿ”ง Configuration

MCP Configuration (for Cursor, Claude, etc.)

{
  "mcpServers": {
    "csvlod-ai": {
      "command": "npx",
      "args": ["-y", "csvlod-ai-mcp-server"],
      "env": {
        "CSVLOD_LOCAL_ONLY": "true"
      }
    }
  }
}

Environment Variables

  • CSVLOD_LOCAL_ONLY - Use only local registry (default: false)
  • CSVLOD_CACHE_DIR - Custom cache directory (default: ~/.csvlod-ai)
  • CSVLOD_REGISTRY_URL - Custom registry URL (for air-gapped environments)

๐Ÿ’ก Usage Examples

Initialize a New Project with CSVLOD

// Tool: csvlod_init
{
  "projectPath": "./my-new-app",
  "type": "enterprise"
}

// Creates:
// - .context/ directory with full CSVLOD structure
// - AI-CONTEXT.md with project overview
// - AGENT-MANIFEST.yaml with capabilities

Orchestrate Multiple MCP Servers

// Tool: mcp_orchestrate
{
  "task": "Analyze my code for security issues and create a report",
  "preferLocal": true,
  "ephemeral": true
}

// Returns execution plan using:
// - filesystem-mcp for code reading
// - security-mcp for analysis
// - report-mcp for generation

Sync and Search Registry

// Tool: mcp_registry
{
  "action": "sync",
  "localOnly": false
}

// Then search:
{
  "action": "search",
  "query": "github"
}

๐ŸŒŸ Philosophy

The CSVLOD-AI MCP Server embodies:

  1. Sovereignty First: Your tools, your data, your control
  2. Context > Prompts: Rich structure enables AI effectiveness
  3. Local > Remote: Everything cached locally for true ownership
  4. Efficiency: 90% optimization principles applied to MCP
  5. Simplicity: Zero dependencies, pure functionality

๐Ÿงช Comprehensive Testing & Validation

The CSVLOD-AI MCP Server features industry-leading test coverage with comprehensive validation of all 12 production MCP tools:

Test Coverage Summary

npm run test:coverage  # Full coverage report
npm run test:all       # Complete test suite with reporting

Test Statistics:

  • 31 Core Functionality Tests โœ… (100% passing)
  • 48 Individual Tool Tests (comprehensive tool validation)
  • 12 Integration Workflow Tests (end-to-end scenarios)
  • 15 Performance Benchmarks (framework claims validation)
  • 18 Error Handling Tests (edge cases and error recovery)

Total: 124+ Test Cases validating every aspect of the framework

MCP Tools Validation โœ…

All 12 production MCP tools are comprehensively tested and validated:

  1. csvlod_init - Initialize CSVLOD-AI framework structure
  2. csvlod_validate - Validate project CSVLOD compliance
  3. csvlod_generate - Generate CSVLOD components
  4. csvlod_analyze - Analyze context effectiveness
  5. mcp_registry - Manage local MCP registry
  6. mcp_orchestrate - Orchestrate MCP servers intelligently
  7. swarm_init - Initialize agent swarm coordination
  8. swarm_decompose - Decompose tasks into agent subtasks
  9. swarm_status - Get agent swarm status
  10. swarm_assign - Assign tasks to available agents
  11. swarm_complete - Mark tasks as completed
  12. swarm_tasks - Retrieve task details and filtering

Performance Validation โœ…

Framework performance claims validated through automated benchmarking:

  • Context Load Time: <5 seconds โœ…
  • Tool Execution: <2-3 seconds per operation โœ…
  • Concurrent Operations: Safe parallel execution โœ…
  • Memory Usage: Efficient resource management โœ…

Test Infrastructure Features

Professional Testing Pipeline:

  • Jest Configuration: ES module support with TypeScript
  • Coverage Thresholds: 80% lines, 80% functions, 70% branches
  • Performance Testing: Automated benchmark validation
  • Test Sequencing: Optimized execution order
  • Error Recovery: Comprehensive edge case handling
  • CI/CD Ready: Production-grade test automation

Test Utilities:

// Automated test runner with comprehensive reporting
npm run test:validate  // Full validation with coverage check
npm run test:individual // Individual tool testing
npm run test:integration // End-to-end workflow testing
npm run test:performance // Performance benchmark testing

๐Ÿค Contributing

  1. Fork the repository
  2. Create your feature branch
  3. Implement following CSVLOD principles
  4. Ensure local-first architecture
  5. Submit PR with context

๐Ÿ“š Documentation

๐Ÿ“„ License

MIT License - Free forever, as sovereignty demands.


Created by Hamza Amjad
Part of the CSVLOD-AI Framework revolutionizing AI-native development

"Context > Prompts. Sovereignty > Dependence. Local > Remote."