Package Exports
- didyoumean3
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (didyoumean3) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
didyoumean3
notice: Covers most situations and still needs to be optimized, i will do better!
features
- Shortest editing algorithm with built-in levenshtein and dice-coefficient
- Support custom extended edit distance algorithm
- Support custom your return result
- Typescript
- Super fast 🚀
- Support emoji or diacritics
usage
npm i didyoumean3
const didyoumean3 = require('didyoumean3').default
// or if you are using TypeScript or ES module
import didyoumean3 from 'didyoumean3'
let input = 'insargrm'
let list = [
'facebook', 'INSTAgram', ' in stagram', 'baidu', 'twitter', 'wechat', 'instagram', 'linkedin'
]
// levenshtein
didyoumean3(input, list) // instagram
// dice-coefficient
didyoumean3(input, list, { similar: 'dice' }) // instagram
read more config info 👇
options description
I'm lazy, I just give the declaration file 👇
export interface Val {
(x: string | object): string
}
export interface Similar {
(a: string, b: string, opts?: Partial<Options>): number
}
export interface Return {
(x: any): any
}
export interface Normalize {
(x: string): string
}
// dice-coefficient or levenshtein
export type BuiltInSimilar = 'dice' | 'leven'
/**
* @type {boolean} ignore: ignore case 'A' -> 'a'
* @type {boolean} trim: ' a bcs ' -> 'a bcs'
* @type {boolean} trimAll: ' a bcs' -> 'abcs'
* @type {boolean} diacritics: 'café' -> 'café'.normalize()
* @type {Function} val: when you need find the best result in a object list, it's useful
* @type {string | Function} similar: use builtin shortest edit-distance algorithm or yours
* @type {Function} result: you can custom your return result
* @type {Function} compartor: you can custom the compare rules, because will maybe use the highest score or the lowest score
*/
export type Options = {
ignore?: boolean, // default false
trim?: boolean, // default true
trimAll?: boolean, // default false
diacritics?: boolean, // default false
normalize?: Normalize, // default undefined
val?: Val, // default undefined
similar?: BuiltInSimilar | Similar, // default leven
result?: Return, // default undefined
compartor?: Compartor // default undefined
}
benchmark
didyoumean x 193,411 ops/sec ±1.39% (87 runs sampled)
didyoumean2 x 303,996 ops/sec ±1.72% (82 runs sampled)
didyoumean3-leven x 489,616 ops/sec ±0.76% (89 runs sampled)
didyoumean3-dice x 130,456 ops/sec ±0.57% (91 runs sampled)
Fastest is didyoumean3-leven
changelog
v-1.0.0
- refactor the beta version, and we can custom our algorithm
- we can custom our result now
- we can custom our normalize string function now
- builtin dice-coefficient or levenshtein algorithm
contributors
nobody now.
Both issure and pr are welcome!