Package Exports
- firelord
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (firelord) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
firelord(BETA, Nodejs)
🐤 admin firestore wrapper with deeper typing solution, handle nested object, nested array, array object, object array..etc types!
🚀 All read and write operation are typed, query field path, field value, collection path, document path, everything is typed!
🔥 Automatically convert all value type to corresponding read type, write type and compare type(good at handling timestamp and field value).
✨ Api closely resemble firestore api, low learning curve.
🐉 Zero dependency.
⛲️ Out of box typescript support.
Variants:
🦙 Purpose
You need to prepare 3 set of data type in order to use firestore properly, best example is sever timestamp, when read, it is Firestore.Timestamp
; when write, it is Firestore.FieldValue
; and finally when compare, it is Date|Firestore.Timestamp
. Actually it is more than this, but this is what the library offer now.
Unfortunately withConverter
is not enough to solve the type problems, there is still no feasible solutions to deal with type like date, firestore.Timestamp, number and array where different types in read, write and compare(query) are needed. This library is a wrapper that introduce deeper typing solution to handle each case.
Not only this library deal with data type, it also provide type safe for collection path, document path, firestore limitations(whenever is possible).
Best thing of all: it handles complicated data type and type all their operations.
require typescript 4.1 and above
Overview:
- generate read(get operation), write type(set/update operation) and compare type(for query) for field value, example:
- server timestamp:
{write: Firestore.FieldValue, read: Firestore.Timestamp, compare: Date | Firestore.Timestamp}
- number:
{write: FieldValue | number, read: number, compare:number}
- xArray:
{write: x[] | FieldValue, read: x[], compare: x[]}
- see conversion table for more
- server timestamp:
Firestore.FieldValue
,Firestore.TimeStamp
,Firestore.GeoPoint
,Date
are treated as primitive types.- Preventing you from explicitly assign
undefined
to partial member in operation likeset
(with merge options) orupdate
while still allowing you to skip that member.(There is option to explicitly assignundefined
if you still want to). - Preventing you from write stranger member (not exist in type) into
set
,create
andupdate
operations, stop unnecessary data from entering firestore. - typed collection path and document path.
- auto generate sub collection path type.
- auto generate
updatedAt
andcreatedAt
timestamp.- auto update
updatedAt
server timestamp to update operation. - auto add
createdAt
andupdatedAt
server timestamp to create and set operation.
- auto update
- finally, type complicated data type like nested object, nested array, object array, array object and all their operations!! Read object typing for more info.
- much better
where
andorderBy
clause- field value are typed accordingly to field path
- comparators depend on field value type, eg you cannot apply
array-contains
operator onto non-array field value - whether you can chain orderBy clause or not is depends on comparator's value, this is according to orderBy limitation, see image below. Go to Order And Limit for documentation.
basically all read operation return read type
data, all write operation require write type
data and all query require compare type
data, you only need to define base type
and the wrapper will generates the other 3 types for you.
You don't need to do any kind of manipulation onto read
, write
and compare
types nor you need to utilize them.
the documentation explains how the types work, the library itself is intuitive in practice, thoroughly refer to the documentation only if you want to have better understanding on how the typing work.
You SHOULD NOT try to memorize how the typing work, keep in mind the purpose is not for you to fit into the type but is to let the type GUIDE you.
🦜 Getting Started
npm i firelord
import { firelord, Firelord } from 'firelord'
// create wrapper
const wrapper = firelord(firestore)
// use base type to generate read and write type
type User = Firelord.ReadWriteCreator<
{
name: string
age: number
birthday: Date
joinDate: 'ServerTimestamp'
beenTo: ('USA' | 'CANADA' | 'RUSSIA' | 'CHINA')[]
}, // base type
'Users', // collection path type
string // document path type
>
// read type
type UserRead = User['read'] // {name: string, age:number, birthday:firestore.Timestamp, joinDate: firestore.Timestamp, beenTo:('USA' | 'CANADA' | 'RUSSIA' | 'CHINA')[], createdAt: firestore.Timestamp, updatedAt: firestore.Timestamp}
// write type
type UserWrite = User['write'] // {name: string, age:number|FirebaseFirestore.FieldValue, birthday:firestore.Timestamp | Date, joinDate:FirebaseFirestore.FieldValue, beenTo:('USA' | 'CANADA' | 'RUSSIA' | 'CHINA')[] | FirebaseFirestore.FieldValue, createdAt: FirebaseFirestore.FieldValue, updatedAt: FirebaseFirestore.FieldValue}
// compare type
type UserCompare = User['compare'] // {name: string, age:number, birthday:Date | firestore.Timestamp, joinDate: Date | firestore.Timestamp, beenTo:('USA' | 'CANADA' | 'RUSSIA' | 'CHINA')[], createdAt: Date | firestore.Timestamp, updatedAt: Date | firestore.Timestamp}
// implement wrapper
const userCreator = wrapper<User>()
// collection reference
const users = userCreator.col('Users') // collection path type is "Users"
// collection group reference
const userGroup = userCreator.colGroup('Users') // collection path type is "Users"
// document reference
const user = users.doc('1234567890') // document path is string
// subCollection of User
type Transaction = Firelord.ReadWriteCreator<
{
amount: number
date: 'ServerTimestamp'
status: 'Fail' | 'Success'
}, // base type
'Transactions', // collection path type
string, // document path type
User // insert parent collection, it will auto construct the sub collection path for you
>
// implement the wrapper
const transactions = wrapper<Transaction>().col('Users/283277782/Transactions') // the type for col is `User/${string}/Transactions`
const transaction = users.doc('1234567890') // document path is string
🦔 Conversion Table
Base | Read | Write | Compare |
---|---|---|---|
number | number | number | FirebaseFirestore.FieldValue (firestore.FieldValue.increment*) | number |
string | string | string | string |
null | null | null | null |
undefined | undefined | undefined | undefined |
Date | firestore.Timestamp | firestore.Timestamp |Date | firestore.Timestamp |Date |
firestore.Timestamp | firestore.Timestamp | firestore.Timestamp |Date | firestore.Timestamp |Date |
'ServerTimestamp' | firestore.Timestamp | FirebaseFirestore.FieldValue (firestore.FieldValue.serverTimestamp*) | firestore.Timestamp |Date |
firestore.GeoPoint | firestore.GeoPoint | firestore.GeoPoint | firestore.GeoPoint |
object** | object | object | object |
number[] | number[] | number[] |FirebaseFirestore.FieldValue(firestore.FieldValue.arrayRemove/arrayUnion*) | number[] |
string[] | string[] | string[] |FirebaseFirestore.FieldValue(firestore.FieldValue.arrayRemove/arrayUnion*) | string[] |
null[] | null[] | null[] |FirebaseFirestore.FieldValue(firestore.FieldValue.arrayRemove/arrayUnion*) | null[] |
undefined[] | undefined[] | undefined[] |FirebaseFirestore.FieldValue(firestore.FieldValue.arrayRemove/arrayUnion*) | undefined[] |
Date[] | firestore.Timestamp[] | (firestore.Timestamp |Date )[] |FirebaseFirestore.FieldValue(firestore.FieldValue.arrayRemove/arrayUnion*) | (Date | firestore.Timestamp)[] |
firestore.Timestamp[] | firestore.Timestamp[] | (firestore.Timestamp |Date )[] |FirebaseFirestore.FieldValue(firestore.FieldValue.arrayRemove/arrayUnion*) | (Date | firestore.Timestamp)[] |
'ServerTimestamp'[] | firestore.Timestamp[] | FirebaseFirestore.FieldValue (firestore.FieldValue.serverTimestamp*)[] |FirebaseFirestore.FieldValue(firestore.FieldValue.arrayRemove/arrayUnion*) | (Date | firestore.Timestamp)[] |
firestore.GeoPoint[] | firestore.GeoPoint[] | firestore.GeoPoint[] | firestore.GeoPoint[] |
object[]** | object[] | object[] | object[] |
n-dimension array | n-dimension array | n-dimension array | FirebaseFirestore.FieldValue(firestore.FieldValue.arrayRemove/arrayUnion*) only supported for 1st dimension array | compare only elements in 1st dimension array |
you can union any types, it will generates the types distributively, for example type string | number | number[] | (string | number)[] | (string | number)[][] | (string | number)[][][]
generates:
read type: string | number | number[] | (string | number)[] | (string | number)[][] | (string | number)[][][]
write type: string | number | FirebaseFirestore.FieldValue | number[] | (string | number)[] | (string | number)[][] | (string | number)[][][]
compare type: string | number | number[] | (string | number)[] | (string | number)[][] | (string | number)[][][]
In practice, any union is not recommended, data should has only one type, except undefined
or null
union that bear certain meaning(value missing or never initialized).
NOTE: Date | firestore.Timestamp
, (Date | firestore.Timestamp)[]
, and Date[] | firestore.Timestamp[]
unions are redundant, because Date
and firestore.Timestamp
generate same read
, write
and compare
types.
*I am not able to narrow down FirebaseFirestore.FieldValue, you might end up using increment on array or assign server time stamp on number or array union number onto string array field, solution is welcomed.
** the wrapper flatten nested object, however there is not much thing to do with object[] type due to how firestore work, read object typing for more info.
🐘 Document operations: Write, Read and Listen
all the document operations api is similar to firestore write, read and listen.
// import user
import { firestore } from 'firebase-admin'
// get data(type is `read type`)
user.get().then(snapshot => {
const data = snapshot.data()
})
// listen to data(type is `read type`)
user.onSnapshot(snapshot => {
const data = snapshot.data()
})
const serverTimestamp = firestore.FieldValue.serverTimestamp()
// create if only exist, else fail
// require all `write type` members(including partial member in `base type`) except `updatedAt` and `createdAt`
// auto add `createdAt` and `updatedAt`
user.create({
name: 'John',
age: 24,
birthday: new Date(1995, 11, 17),
joinDate: serverTimestamp,
beenTo: ['RUSSIA'],
})
// create if not exist, else overwrite
// although it can overwrite, this is intended to use as create
// require all `write type` members(including partial member in `base type`) except `updatedAt` and `createdAt`
// auto add `createdAt` and `updatedAt`
user.set({
name: 'John',
age: 24,
birthday: new Date(1995, 11, 17),
joinDate: serverTimestamp,
beenTo: ['RUSSIA'],
})
// create if not exist, else update
// although it can create if not exist, this is intended to use as update
// all member are partial members, you can leave any of the member out, however typescript will stop you from explicitly assign `undefined` value to any of the member unless you union the type with `undefined` or mark it as optional in `base type`
// auto update `updatedAt`
// the only value for `merge` is `true`
// NOTE: there will be typescript missing property error if all member is not present, to fix this just fill in `{ merge:true }` in option as shown below.
user.set({ name: 'Michael' }, { merge: true })
// create if not exist, else update
// although it can create if not exist, this is intended to use as update
// all member are partial members, you can leave any of the member out, however typescript will stop you from explicitly assign `undefined` value to any of the member unless you union the type with `undefined` or mark it as optional in `base type`
// auto update `updatedAt`
// the merge keys are keys of `base type`
// NOTE: there will be typescript missing property error if all member is not present, to fix this just fill in `mergeField: [<keys>]` in option as shown below.
user.set(
{ name: 'Michael', age: 32, birthday: new Date(1987, 8, 9) },
{ mergeField: ['name', 'age'] } // update only `name` and `age` fields
)
// update if exist, else fail
// all member are partial members, you can leave any of the member out, however typescript will stop you from explicitly assign `undefined` value to any of the member unless you union the type with `undefined` or mark it as optional in `base type`
// auto update `updatedAt`
user.update({ name: 'Michael' })
// delete document
user.delete()
🦩 Document operations: Batch
all api are similar to firestore batch, the only difference is, the batch is member of doc, hence you don't need to define document reference.
// import user
import { firestore } from 'firebase-admin'
// implement the wrapper
const user = wrapper<User>().col('Users').doc('1234567890')
// create batch
const batch = firestore().batch()
const userBatch = user.batch(batch)
// delete document
userBatch.delete()
// create if exist, else fail
// require all `write type` members(including partial member in `base type`) except `updatedAt` and `createdAt`
// auto add `updatedAt` and `createdAt`
userBatch.create({ name: 'Michael', age: 32, birthday: new Date(1987, 8, 9) })
// update if exist, else fail
// all member are partial members, you can leave any of the member out, however typescript will stop you from explicitly assign `undefined` value to any of the member unless you union the type with `undefined` or mark it as optional in `base type`
// auto update `updatedAt`
userBatch.update({ name: 'Ozai' })
//commit
batch.commit()
🐠 Document Operations: Transaction
all api are similar to firestore transaction, the only difference is, the batch is member of doc, hence you don't need to define document reference.
// import user
user.runTransaction(async transaction => {
// get `read type` data
await transaction.get().then(snapshot => {
const data = snapshot.data()
})
// create if only exist, else fail
// require all `write type` members(including partial member in `base type`) except `updatedAt` and `createdAt`
// auto add `createdAt` and `updatedAt`
await transaction.create({
name: 'John',
age: 24,
birthday: new Date(1995, 11, 17),
joinDate: serverTimestamp,
beenTo: ['RUSSIA'],
})
// create if not exist, else overwrite
// although it can overwrite, this is intended to use as create
// require all `write type` members(including partial member in `base type`) except `updatedAt` and `createdAt`
// auto add `createdAt` and `updatedAt`
user.set({
name: 'John',
age: 24,
birthday: new Date(1995, 11, 17),
joinDate: serverTimestamp,
beenTo: ['RUSSIA'],
})
// create if not exist, else update
// although it can create if not exist, this is intended to use as update
// all member are partial members, you can leave any of the member out, however typescript will stop you from explicitly assign `undefined` value to any of the member unless you union the type with `undefined` or mark it as optional in `base type`
// auto update `updatedAt`
// the only value for `merge` is `true`
// NOTE: there will be typescript missing property error if all member is not present, to fix this just fill in `{ merge:true }` in option as shown below.
await transaction.set({ name: 'Michael' }, { merge: true })
// create if not exist, else update
// although it can create if not exist, this is intended to use as update
// all member are partial members, you can leave any of the member out, however typescript will stop you from explicitly assign `undefined` value to any of the member unless you union the type with `undefined` or mark it as optional in `base type`
// auto update `updatedAt`
// the merge keys are keys of `base type`
// NOTE: there will be typescript missing property error if all member is not present, to fix this just fill in `mergeField: [<keys>]` in option as shown below.
await transaction.set(
{ name: 'Michael', age: 32, birthday: new Date(1987, 8, 9) },
{ mergeField: ['name', 'age'] } // update only `name` and `age` fields
)
// update if exist, else fail
// all member are partial members, you can leave any of the member out, however typescript will stop you from explicitly assign `undefined` value to any of the member unless you union the type with `undefined` or mark it as optional in `base type`
// auto update `updatedAt`
await transaction.update({ name: 'Michael' })
// delete document
await transaction.delete()
// keep in mind you need to return promise in transaction
// example code here is just example to show api, this is not the correct way to do it
// refer back firestore guide https://firebase.google.com/docs/firestore/manage-data/transactions
return Promise.resolve('')
})
🌞 Collection Operations: Query
all the api are similar to firestore query, clauses are chain-able.
// import users
// non array data type
// the field path is the keys of the `base type`
// type of opStr is '<' | '<=' | '==' | '!=' | '>=' | '>' | 'not-in' | 'in'
// if type of opStr is '<' | '<=' | '==' | '!=' | '>=' | '>', the value type is same as the member's type in `compare type`
users.where('name', '==', 'John').get()
// if type of opStr is 'not-in' | 'in', the value type is array of member's type in `compare type`
users.where('name', 'in', ['John', 'Michael']).get()
// array data type
// the field path is the keys of the `base type`
// type of `opStr` is 'in' | 'array-contains-any'
// if type of opStr is 'array-contains', the value type is the non-array version of member's type in `compare type`
users.where('beenTo', 'array-contains', 'USA').get()
// if type of opStr is 'array-contains-any', the value type is same as the member's type in `compare type`
users.where('beenTo', 'array-contains-any', ['USA']).get()
// if type of opStr is 'in', the value type is the array of member's type in `compare type`
users.where('beenTo', 'in', [['CANADA', 'RUSSIA']]).get()
🐳 Collection Operations: Order And Limit
all the api are similar to firestore order and limit with slight different, but work the same, clauses are chain-able.
The type rule obey orderBy limitation.
you may want to read this before proceed: Firestore OrderBy and Where conflict and firestore index on how to overcome certain orderBy limitation, this is also considered into typing.
any orderBy
that is not follow where
clause does not abide by rule and limitation mentioned above.
Tips: to make thing easier, whenever you want to use where
+ orderBy
, use the shorthand form (see example code below).
// import users
// the field path is the keys of the `compare type`(basically keyof base type plus `createdAt` and `updatedAt`)
// if the member value type is array, type of `opStr` is 'in' | 'array-contains'| 'array-contains-any'
// if type of opStr is 'array-contains', the value type is the non-array version of member's type in `compare type`
users.where('beenTo', 'array-contains', 'USA').get()
// if type of opStr is 'array-contains-any', the value type is same as the member's type in `compare type`
users.where('beenTo', 'array-contains-any', ['USA']).get()
// if type of opStr is 'in', the value type is the array of member's type in `compare type`
users.where('beenTo', 'in', [['CANADA', 'RUSSIA']]).get()
// orderBy field path only include members that is NOT array type in `compare type`
users.orderBy('name', 'desc').limit(3).get()
// for `array-contains` and `array-contains-any` comparators, you can chain `orderBy` claus with DIFFERENT field path
users.where('beenTo', 'array-contains', 'USA').orderBy('age', 'desc').get()
users
.where('beenTo', 'array-contains-any', ['USA', 'CHINA'])
.orderBy('age', 'desc')
.get()
// for '==' | 'in' comparators:
// no order for '==' | 'in' comparator for SAME field name, read https://stackoverflow.com/a/56620325/5338829 before proceed
users.where('age', '==', 20).orderBy('age', 'desc').get()
// '==' | 'in' is order-able with DIFFERENT field name but need to use SHORTHAND form to ensure type safety
users.where('age', '==', 20).orderBy('name', 'desc').get()
// shorthand ensure type safety, equivalent to where('age', '>', 20).orderBy('name','desc')
users.where('age', '==', 20, { fieldPath: 'name', directionStr: 'desc' }).get()
// again, no order for '==' | 'in' comparator for SAME field name
users.where('age', '==', 20, { fieldPath: 'age', directionStr: 'desc' }).get()
// for '<' | '<=]| '>'| '>=' comparator
// no order for '<' | '<=]| '>'| '>=' comparator for DIFFERENT field name
users.where('age', '>', 20).orderBy('name', 'desc').get()
// '<' | '<=]| '>'| '>=' is oder-able with SAME field name but need to use SHORTHAND form to ensure type safety
users.where('age', '>', 20).orderBy('age', 'desc').get()
// equivalent to where('age', '>', 20).orderBy('age','desc')
users.where('age', '>', 20, { fieldPath: 'age', directionStr: 'desc' }).get()
// again, no order for '<' | '<=]| '>'| '>=' comparator for DIFFERENT field name
users.where('age', '>', 20, { fieldPath: 'name', directionStr: 'desc' }).get()
// for `not-in` and `!=` comparator, you can use normal and shorthand form for both same and different name path
// same field path
users.where('name', 'not-in', ['John', 'Ozai']).orderBy('name', 'desc').get()
// different field path
users.where('name', 'not-in', ['John', 'Ozai']).orderBy('age', 'desc').get()
// shorthand different field path:
users
.where('name', 'not-in', ['John', 'Ozai'], {
fieldPath: 'age',
directionStr: 'desc',
})
.get() // equivalent to where('name', 'not-in', ['John', 'Ozai']).orderBy('age','desc')
// shorthand same field path:
users
.where('name', 'not-in', ['John', 'Ozai'], {
fieldPath: 'name',
directionStr: 'desc',
})
.get() // equivalent to where('name', 'not-in', ['John', 'Ozai']).orderBy('name','desc')
// same field path
users.where('name', '!=', 'John').orderBy('name', 'desc').get()
// different field path
users.where('name', '!=', 'John').orderBy('age', 'desc').get()
// shorthand different field path:
users
.where('name', '!=', 'John', {
fieldPath: 'age',
directionStr: 'desc',
})
.get() // equivalent to where('name', '!=', 'John').orderBy('age','desc')
// shorthand same field path:
users
.where('name', '!=', 'John', {
fieldPath: 'name',
directionStr: 'desc',
})
.get() // equivalent to where('name', '!=', 'John').orderBy('name','desc')
🌺 Collection Operations: Paginate And Cursor
api are slightly different than firestore paginate and cursor, the cursors became orderBy parameter, it still work the same as firestore original api, clauses are chain-able.
// import users
// field path only include members that is NOT array type in `base type`
// field value type is the corresponding field path value type in `compare type`
// value of cursor clause is 'startAt' | 'startAfter' | 'endAt' | 'endBefore'
users.orderBy('age', 'asc', { clause: 'startAt', fieldValue: 20 }).offset(5) // equivalent to orderBy("age").startAt(20).offset(5)
// usage with where
users
.where('name', '!=', 'John')
.orderBy('age', 'desc', { clause: 'endAt', fieldValue: 50 })
// equivalent to shorthand
users
.where('name', '!=', 'John', {
fieldPath: 'age',
directionStr: 'desc',
cursor: { clause: 'endAt', fieldValue: 50 },
})
.get() // equivalent to where('name', '!=', 'John').orderBy('age','desc').endAt(50)
🌵 Collection Group
Api is exactly same as Collection Operations: Query, Order And Limit, Paginate And Cursor
just use collection group reference instead of collection reference, refer back Getting Started on how to create collection group reference
🌻 Object Typing
as for (nested or not)object[] type, its document/collection operations work the same as other array, it will not be flatten down due to how firestore work, read Firestore how to query nested object in array. You cannot query(or set, update, etc) object member in array, nested or not, similar rule apply to nested array.
however, it is very much possible to query and modify object member(nested or not), as long as it is not array, the typing logic works just like other primitive data type in document/collection operation, because this wrapper will flatten all the in object type, nested or not.
NOTE: read type does not flatten, because there is no need to
lastly both object, object[], array, nested or not, all the value type of all member will undergo data type conversion.
consider this example
// import Firelord
// import wrapper
type Nested = Firelord.ReadWriteCreator<
{
a: number
b: { c: string }
d: { e: { f: Date[]; g: { h: { a: number }[] } } }
},
'Nested',
string
>
// read type, does not flatten because no need to
type NestedRead = Nested['read'] // {a: number, b: { c: string }, d: { e: { f: FirebaseFirestore.Timestamp[], g: { h: { a: number }[] } } }, createdAt: firestore.Timestamp, updatedAt: firestore.Timestamp }
// write type
type NestedWrite = Nested['write'] // {a: number | FirebaseFirestore.FieldValue, "b.c": string, "d.e.f": FirebaseFirestore.FieldValue | (FirebaseFirestore.Timestamp | Date)[], "d.e.g.h": FirebaseFirestore.FieldValue | { a: number }[], createdAt: FirebaseFirestore.FieldValue, updatedAt: FirebaseFirestore.FieldValue}
// compare type
type NestedCompare = Nested['compare'] // {a: number, "b.c": string, "d.e.f": (FirebaseFirestore.Timestamp | Date)[], "d.e.g.h": FirebaseFirestore.FieldValue | { a: number }[], createdAt: Date | firestore.Timestamp, updatedAt: Date | firestore.Timestamp}
const nested = wrapper<Nested>().col('Nested')
As you can see the object is flatten down and all the value types is converted
so the next question is, how you gonna shape your own object so you can use it in set
, create
and update
operation?
consider this example:
// import nested
const data = {
a: 1,
b: { c: 'abc' },
d: { e: { f: [new Date(0)], g: { h: [{ a: '123' }] } } },
}
nested.doc('123456').set(data) // ERROR, because the input type is {a: number | FirebaseFirestore.FieldValue, "b.c": string, "d.e.f": FirebaseFirestore.FieldValue | (FirebaseFirestore.Timestamp | Date)[], "d.e.g.h": FirebaseFirestore.FieldValue | { a: number }[]}
nested.doc('123456').update(data) // ERROR, because the input type is PartialNoExplicitUndefinedNoExcessMember<{a: number | FirebaseFirestore.FieldValue, "b.c": string, "d.e.f": FirebaseFirestore.FieldValue | (FirebaseFirestore.Timestamp | Date)[], "d.e.g.h": FirebaseFirestore.FieldValue | { a: number }[]}>
to flatten your object, import flatten
(Reminder, you don't need flatten if your data type is not nested object, but nothing will happen if you accidentally did it)
solution:
// import nested
import { flatten } from 'firelord'
const data = {
a: 1,
b: { c: 'abc' },
d: { e: { f: [new Date(0)], g: { h: [{ a: 123 }] } } },
}
nested.doc('123456').set(data) // ERROR
nested.doc('123456').update(data) // ERROR
nested.doc('123456').set(flatten(data, {})) // ok, see explanation for 2nd argument `{}` in 1st caveat
nested.doc('123456').update(flatten(data, {})) // ok, see explanation for 2nd argument `{}` in 1st caveat
Caveat 1
There are 2 caveats that you need to keep in mind (it is ok if you don't keep in mind, because typescript will stop you if anything goes wrong)
The first caveat: object like Date
, Firestore.FieldValue
, Firestore.Timestamp
, Firestore.GeoPoint
are treated as primitive data type, which mean flatten
will not try to flatten object like this, we will refer these 4 types as primitive object
.
// import Firelord
// import flatten
type HasPrimitiveObject = Firelord.ReadWriteCreator<
{
a: Date
b: { c: string }
d: { e: Date }
},
'Primitive',
string
>
const primitive = wrapper<HasPrimitiveObject>().col('Primitive')
const flattenData = flatten(
{
a: new Date(0),
b: { c: '123' },
d: { e: new Date(0) },
},
{ a: 'a', e: 'e' } // create a mirror object (name same as value) for any property that the value is `primitive object`, in this case, it is `a` and `e`
)
primitive.doc('12345').set(flattenData)
put empty object {}
as 2nd argument if you don't have any primitive object type.
and don't worry, as always typescript will stop you if any step goes wrong
It is better to generate tuple type instead of mirror object type as 2nd parameter, however tuple type is hit with order inconsistency.
Caveat 2
by now you may notice there is some loophole in caveat 1 solution, what if we have 2 property that share the same name? How the wrapper handle this?
This is not a problem(at least not a problem the wrapper cant handle)
in such case, read
, write
, and compare
data type will become never
and you cannot do anything with it, flatten
will also reject such data type.
// import Firelord
// import flatten
type DuplicatePropsName = Firelord.ReadWriteCreator<
{
a: Date
b: { a: string }
},
'Duplicate',
string
>
type read = DuplicatePropsName['read'] // never
type write = DuplicatePropsName['write'] // never
type compare = DuplicatePropsName['compare'] // never
const duplicate = wrapper<DuplicatePropsName>().col('Duplicate')
const flattenData = flatten(
{
a: new Date(0),
b: { a: '123' },
}, // ERROR, cannot assign to `never`
{ a: 'a' }
)
duplicate.doc('12345').set(flattenData) // ERROR, cannot assign to `never`
array however is fine, you can use the same props name if one of it is in array type
type ThisIsFine = Firelord.ReadWriteCreator<
{
a: Date
b: { a: string }[] // this is fine, no conflict
c: { d: { a: string }[] } // this is fine, no conflict
},
'Fine',
string
>
The solution for caveats is little bit awkward(caveat 1 mirror object) and require tolerance from developer(caveat 2). But the reality is, it is not easy to begin with, the library priority is to make sure the safety of the type 1st.
🐕 Opinionated
Code wise, there is one opinionated element in the wrapper, that is createdAt
and updatedAt
timestamp that add or update automatically.
when a document is created via add
, create
or set
without option, two things will happen:
- createdAt field path is created and the value is firestore server timestamp(current server timestamp).
- updatedAt field path is created and the value is new Date(0), it starts at beginning of the time.
when a document is updated via update
or set
with option, updatedAt field path is updated and the value is firestore server timestamp.
This behavior may be undesirable for some people, I will improve this in future by giving the developer choice.
Typing wise, there are few opinionated elements:
set
(without option) andcreate
operations require all member to present.- all write operations reject stranger members.
- although
updatedAt
andcreatedAt
is included in type, all write operation exclude them, which mean you cant write the value ofupdatedAt
andcreatedAt
.
I believe this decision is practical for cases and not planning to change it in forseeable future.
🐇 Limitation
While the wrapper try to safeguard as much type as possible, some problem cannot be solved due to typing difficulty, or require huge effort to implement, or straight up not can be solved.
FirebaseFirestore.FieldValue is not narrowed down.(there should be simple solution for this)
despite able to type orderBy limitation, there is no type safe measurement for Query Limitation because the number of
where
clause is unforeseeable.
💍 Utility
Since write operation reject stranger member (member that not defined in type), you can use object-exact(I am the author) to remove the stranger members, the library return exact type, so it should works well with this library.
If you are looking for npm library like flatten
, see object-flat(I am the author), it is a more general purpose library. Do not use object-flat
in firelord as it is not specifically tailored for firelord, use firelord native flatten instead.