test name | time taken (ms) | executions per sec | sample deviation |
---|---|---|---|
1,000 addVertex | 0.10 | 9534.93 | 8.72e-7 |
1,000 addEdge | 6.30 | 158.67 | 0.00 |
1,000 getVertex | 0.05 | 2.16e+4 | 3.03e-7 |
1,000 getEdge | 22.31 | 44.82 | 0.00 |
tarjan | 210.90 | 4.74 | 0.01 |
tarjan all | 214.72 | 4.66 | 0.01 |
topologicalSort | 172.52 | 5.80 | 0.00 |
Package Exports
- graph-typed
- graph-typed/dist/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (graph-typed) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
What
Brief
This is a standalone Graph data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete data-structure-typed package
How
install
npm
npm i graph-typed --save
yarn
yarn add graph-typed
methods
Directed Graph
Undirected Graph
snippet
TS
DirectedGraph
import {DirectedGraph, DirectedVertex, DirectedEdge} from 'data-structure-typed';
// /* or if you prefer */ import {DirectedGraph, DirectedVertex, DirectedEdge} from 'graph-typed';
const graph = new DirectedGraph();
const vertexA = new DirectedVertex('A');
const vertexB = new DirectedVertex('B');
const vertexC = new DirectedVertex('C');
const edgeAB = new DirectedEdge('A', 'B');
const edgeBC = new DirectedEdge('B', 'C');
graph.addVertex(vertexA);
graph.addVertex(vertexB);
graph.addVertex(vertexC);
graph.addEdge(edgeAB);
graph.addEdge(edgeBC);
const topologicalOrder = graph.topologicalSort();
if (topologicalOrder) expect(topologicalOrder).toEqual(['A', 'B', 'C'])
MapGraph
import {MapGraph, MapVertex} from 'data-structure-typed';
// /* or if you prefer */ import {MapGraph, MapVertex} from 'graph-typed';
const mapGraph = new MapGraph([5.500338, 100.173665]);
mapGraph.addVertex(new MapVertex('Surin', 5.466724, 100.274805));
mapGraph.addVertex(new MapVertex('Batu Feringgi Beach', 5.475141, 100.276670));
mapGraph.addVertex(new MapVertex('Lotus', 5.459044, 100.308767));
mapGraph.addVertex(new MapVertex('The Breeza', 5.454197, 100.307859));
mapGraph.addVertex(new MapVertex('Hard Rock Hotel', 5.467850, 100.241876));
mapGraph.addVertex(new MapVertex('Mira', 5.456749, 100.286650));
mapGraph.addVertex(new MapVertex('Penang Bible Church', 5.428683, 100.314825));
mapGraph.addVertex(new MapVertex('Queensbay', 5.332760, 100.306651));
mapGraph.addVertex(new MapVertex('Saanen Goat Farm', 5.405738, 100.207699));
mapGraph.addVertex(new MapVertex('Trinity Auto', 5.401126, 100.303739));
mapGraph.addVertex(new MapVertex('Penang Airport', 5.293185, 100.265772));
mapGraph.addEdge('Surin', 'Lotus', 4.7);
mapGraph.addEdge('Lotus', 'The Breeza', 1);
mapGraph.addEdge('Batu Feringgi Beach', 'Hard Rock Hotel', 5.2);
mapGraph.addEdge('Surin', 'Mira', 2.8);
mapGraph.addEdge('Mira', 'Penang Bible Church', 7.0);
mapGraph.addEdge('Lotus', 'Penang Bible Church', 5.7);
mapGraph.addEdge('Penang Bible Church', 'Queensbay', 13.9);
mapGraph.addEdge('Hard Rock Hotel', 'Saanen Goat Farm', 18.5);
mapGraph.addEdge('The Breeza', 'Trinity Auto', 9.1);
mapGraph.addEdge('Trinity Auto', 'Saanen Goat Farm', 26.3);
mapGraph.addEdge('The Breeza', 'Penang Airport', 24.8);
mapGraph.addEdge('Penang Airport', 'Saanen Goat Farm', 21.2);
const expected1 = ['Surin', 'Lotus', 'The Breeza', 'Trinity Auto', 'Saanen Goat Farm'];
const minPathBetween = mapGraph.getMinPathBetween('Surin', 'Saanen Goat Farm');
expect(minPathBetween?.map(v => v.id)).toEqual(expected1);
const surinToSaanenGoatFarmDij = mapGraph.dijkstra('Surin', 'Saanen Goat Farm', true, true);
expect(surinToSaanenGoatFarmDij?.minPath.map(v => v.id)).toEqual(expected1);
expect(surinToSaanenGoatFarmDij?.minDist).toBe(41.1);
mapGraph.addEdge('Surin', 'Batu Feringgi Beach', 1.5);
const expected2 = ['Surin', 'Batu Feringgi Beach', 'Hard Rock Hotel', 'Saanen Goat Farm'];
const minPathBetweenViaBFB = mapGraph.getMinPathBetween('Surin', 'Saanen Goat Farm', true);
expect(minPathBetweenViaBFB?.map(v => v.id)).toEqual(expected2);
const surinToSaanenGoatFarmViaDij = mapGraph.dijkstra('Surin', 'Saanen Goat Farm', true, true);
expect(surinToSaanenGoatFarmViaDij?.minPath.map(v => v.id)).toEqual(expected2);
expect(surinToSaanenGoatFarmViaDij?.minDist).toBe(25.2);
JS
DirectedGraph
const {DirectedGraph, DirectedVertex, DirectedEdge} = require('data-structure-typed');
// /* or if you prefer */ const {DirectedGraph, DirectedVertex, DirectedEdge} = require('graph-typed');
const graph = new DirectedGraph();
const vertexA = new DirectedVertex('A');
const vertexB = new DirectedVertex('B');
const vertexC = new DirectedVertex('C');
const edgeAB = new DirectedEdge('A', 'B');
const edgeBC = new DirectedEdge('B', 'C');
graph.addVertex(vertexA);
graph.addVertex(vertexB);
graph.addVertex(vertexC);
graph.addEdge(edgeAB);
graph.addEdge(edgeBC);
const topologicalOrder = graph.topologicalSort();
if (topologicalOrder) expect(topologicalOrder).toEqual(['A', 'B', 'C'])
MapGraph
const {MapGraph, MapVertex} = require('data-structure-typed');
// /* or if you prefer */ const {MapGraph, MapVertex} = require('graph-typed');
const mapGraph = new MapGraph([5.500338, 100.173665]);
mapGraph.addVertex(new MapVertex('Surin', 5.466724, 100.274805));
mapGraph.addVertex(new MapVertex('Batu Feringgi Beach', 5.475141, 100.276670));
mapGraph.addVertex(new MapVertex('Lotus', 5.459044, 100.308767));
mapGraph.addVertex(new MapVertex('The Breeza', 5.454197, 100.307859));
mapGraph.addVertex(new MapVertex('Hard Rock Hotel', 5.467850, 100.241876));
mapGraph.addVertex(new MapVertex('Mira', 5.456749, 100.286650));
mapGraph.addVertex(new MapVertex('Penang Bible Church', 5.428683, 100.314825));
mapGraph.addVertex(new MapVertex('Queensbay', 5.332760, 100.306651));
mapGraph.addVertex(new MapVertex('Saanen Goat Farm', 5.405738, 100.207699));
mapGraph.addVertex(new MapVertex('Trinity Auto', 5.401126, 100.303739));
mapGraph.addVertex(new MapVertex('Penang Airport', 5.293185, 100.265772));
mapGraph.addEdge('Surin', 'Lotus', 4.7);
mapGraph.addEdge('Lotus', 'The Breeza', 1);
mapGraph.addEdge('Batu Feringgi Beach', 'Hard Rock Hotel', 5.2);
mapGraph.addEdge('Surin', 'Mira', 2.8);
mapGraph.addEdge('Mira', 'Penang Bible Church', 7.0);
mapGraph.addEdge('Lotus', 'Penang Bible Church', 5.7);
mapGraph.addEdge('Penang Bible Church', 'Queensbay', 13.9);
mapGraph.addEdge('Hard Rock Hotel', 'Saanen Goat Farm', 18.5);
mapGraph.addEdge('The Breeza', 'Trinity Auto', 9.1);
mapGraph.addEdge('Trinity Auto', 'Saanen Goat Farm', 26.3);
mapGraph.addEdge('The Breeza', 'Penang Airport', 24.8);
mapGraph.addEdge('Penang Airport', 'Saanen Goat Farm', 21.2);
const expected1 = ['Surin', 'Lotus', 'The Breeza', 'Trinity Auto', 'Saanen Goat Farm'];
const minPathBetween = mapGraph.getMinPathBetween('Surin', 'Saanen Goat Farm');
expect(minPathBetween?.map(v => v.id)).toEqual(expected1);
const surinToSaanenGoatFarmDij = mapGraph.dijkstra('Surin', 'Saanen Goat Farm', true, true);
expect(surinToSaanenGoatFarmDij?.minPath.map(v => v.id)).toEqual(expected1);
expect(surinToSaanenGoatFarmDij?.minDist).toBe(41.1);
mapGraph.addEdge('Surin', 'Batu Feringgi Beach', 1.5);
const expected2 = ['Surin', 'Batu Feringgi Beach', 'Hard Rock Hotel', 'Saanen Goat Farm'];
const minPathBetweenViaBFB = mapGraph.getMinPathBetween('Surin', 'Saanen Goat Farm', true);
expect(minPathBetweenViaBFB?.map(v => v.id)).toEqual(expected2);
const surinToSaanenGoatFarmViaDij = mapGraph.dijkstra('Surin', 'Saanen Goat Farm', true, true);
expect(surinToSaanenGoatFarmViaDij?.minPath.map(v => v.id)).toEqual(expected2);
expect(surinToSaanenGoatFarmViaDij?.minDist).toBe(25.2);
API docs & Examples
Data Structures
Data Structure | Unit Test | Performance Test | API Docs |
---|---|---|---|
Graph | AbstractGraph | ||
Directed Graph | DirectedGraph | ||
Undirected Graph | UndirectedGraph |
Standard library data structure comparison
Data Structure Typed | C++ STL | java.util | Python collections |
---|---|---|---|
DirectedGraph<V, E> | - | - | - |
UndirectedGraph<V, E> | - | - | - |
Benchmark
directed-graph
Built-in classic algorithms
Algorithm | Function Description | Iteration Type |
---|---|---|
Graph DFS | Traverse a graph in a depth-first manner, starting from a given node, exploring along one path as deeply as possible, and backtracking to explore other paths. Used for finding connected components, paths, etc. | Recursion + Iteration |
Graph BFS | Traverse a graph in a breadth-first manner, starting from a given node, first visiting nodes directly connected to the starting node, and then expanding level by level. Used for finding shortest paths, etc. | Recursion + Iteration |
Graph Tarjan's Algorithm | Find strongly connected components in a graph, typically implemented using depth-first search. | Recursion |
Graph Bellman-Ford Algorithm | Finding the shortest paths from a single source, can handle negative weight edges | Iteration |
Graph Dijkstra's Algorithm | Finding the shortest paths from a single source, cannot handle negative weight edges | Iteration |
Graph Floyd-Warshall Algorithm | Finding the shortest paths between all pairs of nodes | Iteration |
Graph getCycles | Find all cycles in a graph or detect the presence of cycles. | Recursion |
Graph getCutVertexes | Find cut vertices in a graph, which are nodes that, when removed, increase the number of connected components in the graph. | Recursion |
Graph getSCCs | Find strongly connected components in a graph, which are subgraphs where any two nodes can reach each other. | Recursion |
Graph getBridges | Find bridges in a graph, which are edges that, when removed, increase the number of connected components in the graph. | Recursion |
Graph topologicalSort | Perform topological sorting on a directed acyclic graph (DAG) to find a linear order of nodes such that all directed edges go from earlier nodes to later nodes. | Recursion |
Software Engineering Design Standards
Principle | Description |
---|---|
Practicality | Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names. |
Extensibility | Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures. |
Modularization | Includes data structure modularization and independent NPM packages. |
Efficiency | All methods provide time and space complexity, comparable to native JS performance. |
Maintainability | Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns. |
Testability | Automated and customized unit testing, performance testing, and integration testing. |
Portability | Plans for porting to Java, Python, and C++, currently achieved to 80%. |
Reusability | Fully decoupled, minimized side effects, and adheres to OOP. |
Security | Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects. |
Scalability | Data structure software does not involve load issues. |