Package Exports
- io-ts
- io-ts/lib
- io-ts/lib/PathReporter
- io-ts/lib/PathReporter.js
- io-ts/lib/Reporter
- io-ts/lib/ThrowReporter
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (io-ts) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
The idea
Blog post: "Typescript and validations at runtime boundaries" by @lorefnon
A value of type Type<A, O, I>
(called "runtime type") is the runtime representation of the static type A
.
Also a runtime type can
- decode inputs of type
I
(throughdecode
) - encode outputs of type
O
(throughencode
) - be used as a custom type guard (through
is
)
export type mixed = object | number | string | boolean | symbol | undefined | null
class Type<A, O = A, I = mixed> {
readonly _A: A
readonly _O: O
readonly _I: I
constructor(
/** a unique name for this runtime type */
readonly name: string,
/** a custom type guard */
readonly is: (v: mixed) => v is A,
/** succeeds if a value of type I can be decoded to a value of type A */
readonly validate: (input: I, context: Context) => Either<Errors, A>,
/** converts a value of type A to a value of type O */
readonly encode: (a: A) => O
) {}
/** a version of `validate` with a default context */
decode(i: I): Either<Errors, A>
}
Note. The Either
type is defined in fp-ts, a library containing implementations of
common algebraic types in TypeScript.
Example
A runtime type representing string
can be defined as
import * as t from 'io-ts'
// runtime type definition
export class StringType extends t.Type<string> {
// equivalent to Type<string, string, mixed> as per type parameter defaults
readonly _tag: 'StringType' = 'StringType'
constructor() {
super(
'string',
(m): m is string => typeof m === 'string',
(m, c) => (this.is(m) ? t.success(m) : t.failure(m, c)),
t.identity
)
}
}
// runtime type instance: use this when building other runtime types instances
export const string = new StringType()
A runtime type can be used to validate an object in memory (for example an API payload)
const Person = t.type({
name: t.string,
age: t.number
})
// validation succeeded
Person.decode(JSON.parse('{"name":"Giulio","age":43}')) // => Right({name: "Giulio", age: 43})
// validation failed
Person.decode(JSON.parse('{"name":"Giulio"}')) // => Left([...])
TypeScript compatibility
The stable version is tested against TypeScript 3.1.1, but should run with TypeScript 2.7.2+ too
Error reporters
A reporter implements the following interface
interface Reporter<A> {
report: (validation: Validation<any>) => A
}
This package exports two default reporters
PathReporter: Reporter<Array<string>>
ThrowReporter: Reporter<void>
Example
import { PathReporter } from 'io-ts/lib/PathReporter'
import { ThrowReporter } from 'io-ts/lib/ThrowReporter'
const result = Person.decode({ name: 'Giulio' })
console.log(PathReporter.report(result))
// => ['Invalid value undefined supplied to : { name: string, age: number }/age: number']
ThrowReporter.report(result)
// => throws 'Invalid value undefined supplied to : { name: string, age: number }/age: number'
You can define your own reporter. Errors
has the following type
interface ContextEntry {
readonly key: string
readonly type: Decoder<any, any>
}
interface Context extends ReadonlyArray<ContextEntry> {}
interface ValidationError {
readonly value: mixed
readonly context: Context
}
interface Errors extends Array<ValidationError> {}
Example
import * as t from 'io-ts'
const getPaths = <A>(v: t.Validation<A>): Array<string> => {
return v.fold(errors => errors.map(error => error.context.map(({ key }) => key).join('.')), () => ['no errors'])
}
const Person = t.type({
name: t.string,
age: t.number
})
console.log(getPaths(Person.decode({}))) // => [ '.name', '.age' ]
Community
- io-ts-types - A collection of runtime types and combinators for use with io-ts
- io-ts-reporters - Error reporters for io-ts
- geojson-iots - Runtime types for GeoJSON as defined in rfc7946 made with io-ts
- graphql-to-io-ts - Generate typescript and cooresponding io-ts types from a graphql schema
TypeScript integration
Runtime types can be inspected
This library uses TypeScript extensively. Its API is defined in a way which automatically infers types for produced values
Note that the type annotation isn't needed, TypeScript infers the type automatically based on a schema.
Static types can be extracted from runtime types using the TypeOf
operator
interface IPerson extends t.TypeOf<typeof Person> {}
// same as
interface IPerson {
name: string
age: number
}
Implemented types / combinators
import * as t from 'io-ts'
Type | TypeScript | Runtime type / combinator |
---|---|---|
null | null |
t.null or t.nullType |
undefined | undefined |
t.undefined |
void | void |
t.void or t.voidType |
string | string |
t.string |
number | number |
t.number |
boolean | boolean |
t.boolean |
any | any |
t.any |
never | never |
t.never |
object | object |
t.object |
integer | ✘ | t.Integer |
array of any | Array<mixed> |
t.Array |
array of type | Array<A> |
t.array(A) |
dictionary of any | { [key: string]: mixed } |
t.Dictionary |
dictionary of type | { [K in A]: B } |
t.dictionary(A, B) |
function | Function |
t.Function |
literal | 's' |
t.literal('s') |
partial | Partial<{ name: string }> |
t.partial({ name: t.string }) |
readonly | Readonly<T> |
t.readonly(T) |
readonly array | ReadonlyArray<number> |
t.readonlyArray(t.number) |
type alias | type A = { name: string } |
t.type({ name: t.string }) |
tuple | [ A, B ] |
t.tuple([ A, B ]) |
union | A | B |
t.union([ A, B ]) or t.taggedUnion(tag, [ A, B ]) |
intersection | A & B |
t.intersection([ A, B ]) |
keyof | keyof M |
t.keyof(M) |
recursive types | see Recursive types | t.recursion(name, definition) |
refinement | ✘ | t.refinement(A, predicate) |
exact types | ✘ | t.exact(type) |
strict types (deprecated) | ✘ | t.strict({ name: t.string }) |
Recursive types
Recursive types can't be inferred by TypeScript so you must provide the static type as a hint
// helper type
interface ICategory {
name: string
categories: Array<ICategory>
}
const Category = t.recursion<ICategory>('Category', Category =>
t.type({
name: t.string,
categories: t.array(Category)
})
)
Mutually recursive types
interface IFoo {
type: 'Foo'
b: IBar | undefined
}
interface IBar {
type: 'Bar'
a: IFoo | undefined
}
const Foo: t.RecursiveType<t.Type<IFoo>, IFoo> = t.recursion<IFoo>('Foo', _ =>
t.interface({
type: t.literal('Foo'),
b: t.union([Bar, t.undefined])
})
)
const Bar: t.RecursiveType<t.Type<IBar>, IBar> = t.recursion<IBar>('Bar', _ =>
t.interface({
type: t.literal('Bar'),
a: t.union([Foo, t.undefined])
})
)
const FooBar = t.taggedUnion('type', [Foo, Bar])
Tagged unions
If you are encoding tagged unions, instead of the general purpose union
combinator, you may want to use the
taggedUnion
combinator in order to get better performances
const A = t.type({
tag: t.literal('A'),
foo: t.string
})
const B = t.type({
tag: t.literal('B'),
bar: t.number
})
// the actual presence of the tag is statically checked
const U = t.taggedUnion('tag', [A, B])
Refinements
You can refine a type (any type) using the refinement
combinator
const Positive = t.refinement(t.number, n => n >= 0, 'Positive')
const Adult = t.refinement(Person, person => person.age >= 18, 'Adult')
Exact types
You can make a runtime type alias exact (which means that only the given properties are allowed) using the exact
combinator
const Person = t.type({
name: t.string,
age: t.number
})
const ExactPerson = t.exact(Person)
Person.decode({ name: 'Giulio', age: 43, surname: 'Canti' }) // ok
ExactPerson.decode({ name: 'Giulio', age: 43, surname: 'Canti' }) // fails
Strict types (deprecated)
Note. This combinator is deprecated, use exact
instead.
You can make a runtime type strict (which means that only the given properties are allowed) using the strict
combinator
const Person = t.type({
name: t.string,
age: t.number
})
const StrictPerson = t.strict(Person.props)
Person.decode({ name: 'Giulio', age: 43, surname: 'Canti' }) // ok
StrictPerson.decode({ name: 'Giulio', age: 43, surname: 'Canti' }) // fails
Mixing required and optional props
You can mix required and optional props using an intersection
const A = t.type({
foo: t.string
})
const B = t.partial({
bar: t.number
})
const C = t.intersection([A, B])
interface CT extends t.TypeOf<typeof C> {}
// same as
type CT = {
foo: string
bar?: number
}
You can apply partial
to an already defined runtime type via its props
field
const Person = t.type({
name: t.string,
age: t.number
})
const PartialPerson = t.partial(Person.props)
interface PartialPerson extends t.TypeOf<typeof PartialPerson> {}
// same as
interface PartialPerson {
name?: string
age?: number
}
Custom types
You can define your own types. Let's see an example
import * as t from 'io-ts'
// represents a Date from an ISO string
const DateFromString = new t.Type<Date, string>(
'DateFromString',
(m): m is Date => m instanceof Date,
(m, c) =>
t.string.validate(m, c).chain(s => {
const d = new Date(s)
return isNaN(d.getTime()) ? t.failure(s, c) : t.success(d)
}),
a => a.toISOString()
)
const s = new Date(1973, 10, 30).toISOString()
DateFromString.decode(s)
// right(new Date('1973-11-29T23:00:00.000Z'))
DateFromString.decode('foo')
// left(errors...)
Note that you can deserialize while validating.
Generic Types
Polymorphic runtime types are represented using functions. For example, the following typescript:
interface ResponseBody<T> {
result: T
_links: Links
}
interface Links {
previous: string
next: string
}
Would be:
import * as t from 'io-ts'
const ResponseBody = <RT extends t.Mixed>(type: RT) =>
t.interface({
result: type,
_links: Links
})
const Links = t.interface({
previous: t.string,
next: t.string
})
And used like:
const UserModel = t.interface({ name: t.string })
functionThatRequiresRuntimeType(ResponseBody(t.array(UserModel)), ...params)
Tips and Tricks
Is there a way to turn the checks off in production code?
No, however you can define your own logic for that (if you really trust the input)
import * as t from 'io-ts'
import { Either, right } from 'fp-ts/lib/Either'
const { NODE_ENV } = process.env
export function unsafeDecode<A, O>(value: t.mixed, type: t.Type<A, O>): Either<t.Errors, A> {
if (NODE_ENV !== 'production' || type.encode !== t.identity) {
return type.decode(value)
} else {
// unsafe cast
return right(value as A)
}
}
// or...
import { failure } from 'io-ts/lib/PathReporter'
export function unsafeGet<A, O>(value: t.mixed, type: t.Type<A, O>): A {
if (NODE_ENV !== 'production' || type.encode !== t.identity) {
return type.decode(value).getOrElseL(errors => {
throw new Error(failure(errors).join('\n'))
})
} else {
// unsafe cast
return value as A
}
}
Union of string literals
Use keyof
instead of union
when defining a union of string literals
const Bad = t.union([
t.literal('foo'),
t.literal('bar'),
t.literal('baz')
// etc...
])
const Good = t.keyof({
foo: null,
bar: null,
baz: null
// etc...
})
Benefits
- unique check for free
- better performance
- quick info stays responsive
Known issues
VS Code might display weird types for nested types
const NestedInterface = t.type({
foo: t.string,
bar: t.type({
baz: t.string
})
})
type NestedInterfaceType = t.TypeOf<typeof NestedInterface>
/*
Hover on NestedInterfaceType will display
type NestedInterfaceType = {
foo: string;
bar: t.TypeOfProps<{
baz: t.StringType;
}>;
}
instead of
type NestedInterfaceType = {
foo: string;
bar: {
baz: string
}
}
*/
Solution: the clean
and alias
functions
The pattern
// private runtime type
const _NestedInterface = t.type({
foo: t.string,
bar: t.type({
baz: t.string
})
})
// a type alias using interface
export interface NestedInterface extends t.TypeOf<typeof _NestedInterface> {}
//
// Two possible options for the exported runtime type
//
// a clean NestedInterface which drops the kind...
export const NestedInterface = t.clean<NestedInterface, NestedInterface>(_NestedInterface)
/*
NestedInterface: t.Type<NestedInterface, NestedInterface, t.mixed>
*/
// ... or an alias of _NestedInterface which keeps the kind
export const NestedInterface = t.alias(_NestedInterface)<NestedInterface, NestedInterface>()
/*
t.InterfaceType<{
foo: t.StringType;
bar: t.InterfaceType<{
baz: t.StringType;
}, t.TypeOfProps<{
baz: t.StringType;
}>, t.OutputOfProps<{
baz: t.StringType;
}>, t.mixed>;
}, NestedInterface, NestedInterface, t.mixed>
*/
// you can also alias the props
interface NestedInterfaceProps extends t.PropsOf<typeof _NestedInterface> {}
export const NestedInterface = t.alias(_NestedInterface)<NestedInterface, NestedInterface, NestedInterfaceProps>()
/*
const NestedInterface: t.InterfaceType<NestedInterfaceProps, NestedInterface, NestedInterface, t.mixed>
*/