Package Exports
- map-reduce
- map-reduce/range
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (map-reduce) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Map Reduce for leveldb (via levelup)
Incremental map-reduces and real-time results.
Waat?
An "incremental map reduce" means when you update one key, only a relevant protion of the data needs to be recalculated.
"real-time results" means that you can listen to the database, and recieve change notifications on the fly! a la level-live-stream
Example
create a simple map-reduce
var LevelUp = require('levelup')
var SubLevel = require('level-sublevel')
var MapReduce = require('map-reduce')
var db = SubLevel(LevelUp(file))
var mapDb =
MapReduce(
db, //the parent db
'example', //name.
function (key, value, emit) {
//perform some mapping.
var obj = JSON.parse(value)
//emit(key, value)
//key may be an array of strings.
//value must be a string or buffer.
emit(['all', obj.group], ''+obj.lines.length)
},
function (acc, value, key) {
//reduce little into big
//must return a string or buffer.
return ''+(Number(acc) + Number(value))
},
//pass in the initial value for the reduce.
//*must* be a string or buffer.
'0'
})
})
map-reduce
uses level-trigger to make map reduces durable.
querying results.
//get all the results in a specific group
//start:[...] implies end:.. to be the end of that group.
mapDb.creatReadStream({range: ['all', group]})
//get all the results in under a group.
mapDb.creatReadStream({range: ['all', true]})
//get all the top level
mapDb.creatReadStream({range: [true]})
complex aggregations
map-reduce with multiple levels of aggregation.
suppose we are building a database of all the street-food in the world. the data looks like this:
{
country: USA | Germany | Cambodia, etc...
state: CA | NY | '', etc...
city: Oakland | New York | Berlin | Phnom Penh, etc...
type: taco | chili-dog | doner | noodles, etc...
}
We will aggregate to counts per-region, that look like this:
//say: under the key USA
{
'taco': 23497,
'chili-dog': 5643,
etc...
}
first we'll map the raw data to ([country, state, city],type)
tuples.
then we'll count up all the instances of a particular type in that region!
var LevelUp = require('levelup')
var SubLevel = require('level-sublevel')
var MapReduce = require('map-reduce')
var db = SubLevel(LevelUp(file))
var mapDb =
MapReduce(
db,
'streetfood',
function (key, value, emit) {
//perform some mapping.
var obj = JSON.parse(value)
//emit(key, value)
//key may be an array of strings.
//value must be a string or buffer.
emit(
[obj.country, obj.state || '', obj.city],
//notice that we are just returning a string.
JSON.stringify(obj.type)
)
},
function (acc, value) {
acc = JSON.parse(acc)
value = JSON.parse(value)
//check if this is top level data, like 'taco' or 'noodle'
if('string' === typeof value) {
//increment by one (remember to set as a number if it was undefined)
acc[value] = (acc[value] || 0) ++
return JSON.stringify(acc)
}
//if we get to here, we are combining two aggregates.
//say, all the cities in a state, or all the countries in the world.
//value and acc will both be objects {taco: number, doner: number2, etc...}
for(var type in value) {
//add the counts for each type together...
//remembering to check that it is set as a value...
acc[type] = (acc[type] || 0) + value[type]
}
//stringify the object, so that it can be written to disk!
return JSON.stringify(acc)
},
'{}')
then query it like this:
mapDb.createReadStream({range: ['USA', 'CA', true]})
.pipe(...)
License
MIT