Package Exports
- mcp-upstage-server
- mcp-upstage-server/dist/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (mcp-upstage-server) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
MCP-Upstage-Server
Node.js/TypeScript implementation of the MCP server for Upstage AI services.
Features
- Document Parsing: Extract structure and content from various document types (PDF, images, Office files)
- Information Extraction: Extract structured information using custom or auto-generated schemas
- Built with TypeScript for type safety
- Async/await pattern throughout
- Comprehensive error handling and retry logic
- Progress reporting support
Installation
Prerequisites
- Node.js 18.0.0 or higher
- Upstage API key from Upstage Console
Install from npm
# Install globally
npm install -g mcp-upstage-server
# Or use with npx (no installation required)
npx mcp-upstage-serverInstall from source
# Clone the repository
git clone https://github.com/UpstageAI/mcp-upstage.git
cd mcp-upstage/mcp-upstage-node
# Install dependencies
npm install
# Build the project
npm run build
# Set up environment variables
cp .env.example .env
# Edit .env and add your UPSTAGE_API_KEYUsage
Running the server
# With stdio transport (default)
UPSTAGE_API_KEY=your-api-key npx mcp-upstage-server
# With HTTP Streamable transport
UPSTAGE_API_KEY=your-api-key npx mcp-upstage-server --http
# With HTTP transport on custom port
UPSTAGE_API_KEY=your-api-key npx mcp-upstage-server --http --port 8080
# Show help
npx mcp-upstage-server --help
# Development mode (from source)
npm run dev
# Production mode (from source)
npm startIntegration with Claude Desktop
Option 1: stdio transport (default)
{
"mcpServers": {
"upstage": {
"command": "npx",
"args": ["mcp-upstage-server"],
"env": {
"UPSTAGE_API_KEY": "your-api-key-here"
}
}
}
}Option 2: HTTP Streamable transport
{
"mcpServers": {
"upstage-http": {
"command": "npx",
"args": ["mcp-upstage-server", "--http", "--port", "3000"],
"env": {
"UPSTAGE_API_KEY": "your-api-key-here"
}
}
}
}Transport Options
stdio Transport (Default)
- Pros: Simple setup, direct process communication
- Cons: Single client connection only
- Usage: Default mode, no additional configuration needed
HTTP Streamable Transport
- Pros: Multiple client support, network accessible, RESTful API
- Cons: Requires port management, network configuration
- Endpoints:
POST /mcp- Main MCP communication endpointGET /mcp- Server-Sent Events streamGET /health- Health check endpoint
Available Tools
parse_document
Parse a document using Upstage AI's document digitization API.
Parameters:
file_path(required): Path to the document fileoutput_formats(optional): Array of output formats (e.g., ['html', 'text', 'markdown'])
Supported formats: PDF, JPEG, PNG, TIFF, BMP, GIF, WEBP
extract_information
Extract structured information from documents using Upstage Universal Information Extraction.
Parameters:
file_path(required): Path to the document fileschema_path(optional): Path to JSON schema fileschema_json(optional): JSON schema as stringauto_generate_schema(optional, default: true): Auto-generate schema if none provided
Supported formats: JPEG, PNG, BMP, PDF, TIFF, HEIC, DOCX, PPTX, XLSX
Schema Guide for Information Extraction
When auto_generate_schema is false, you need to provide a custom schema. Here's how to format it correctly:
📋 Basic Schema Structure
The schema must follow this exact structure:
{
"type": "json_schema",
"json_schema": {
"name": "document_schema",
"schema": {
"type": "object",
"properties": {
"field_name": {
"type": "string|number|array|object",
"description": "Description of what to extract"
}
}
}
}
}❌ Common Mistakes
Wrong: Missing nested structure
{
"company_name": {
"type": "string"
}
}Wrong: Incorrect response_format
{
"schema": {
"company_name": "string"
}
}Wrong: Missing properties wrapper
{
"type": "json_schema",
"json_schema": {
"name": "document_schema",
"schema": {
"type": "object",
"company_name": {
"type": "string"
}
}
}
}✅ Correct Examples
Simple schema:
{
"type": "json_schema",
"json_schema": {
"name": "document_schema",
"schema": {
"type": "object",
"properties": {
"company_name": {
"type": "string",
"description": "Name of the company"
},
"invoice_number": {
"type": "string",
"description": "Invoice number"
},
"total_amount": {
"type": "number",
"description": "Total invoice amount"
}
}
}
}
}Complex schema with arrays and objects:
{
"type": "json_schema",
"json_schema": {
"name": "document_schema",
"schema": {
"type": "object",
"properties": {
"company_info": {
"type": "object",
"properties": {
"name": {"type": "string"},
"address": {"type": "string"},
"phone": {"type": "string"}
},
"description": "Company information"
},
"items": {
"type": "array",
"items": {
"type": "object",
"properties": {
"item_name": {"type": "string"},
"quantity": {"type": "number"},
"price": {"type": "number"}
}
},
"description": "List of invoice items"
},
"invoice_date": {
"type": "string",
"description": "Invoice date in YYYY-MM-DD format"
}
}
}
}
}🛠️ Schema Creation Helper
You can create schemas programmatically:
function createSchema(fields) {
return JSON.stringify({
"type": "json_schema",
"json_schema": {
"name": "document_schema",
"schema": {
"type": "object",
"properties": fields
}
}
});
}
// Usage example:
const schema = createSchema({
"company_name": {
"type": "string",
"description": "Company name"
},
"total": {
"type": "number",
"description": "Total amount"
}
});💡 Data Types
"string": Text data (names, addresses, etc.)"number": Numeric data (amounts, quantities, etc.)"boolean": True/false values"array": Lists of items"object": Nested structures"null": Null values
📝 Best Practices
- Always include descriptions: They help the AI understand what to extract
- Use specific field names:
invoice_dateinstead ofdate - Nest related fields: Group related information in objects
- Validate your JSON: Use a JSON validator before using the schema
- Test with simple schemas first: Start with basic fields before adding complexity
Development
# Run tests
npm test
# Run tests in watch mode
npm run test:watch
# Lint code
npm run lint
# Format code
npm run format
# Clean build artifacts
npm run cleanProject Structure
mcp-upstage-node/
├── src/
│ ├── index.ts # Entry point
│ ├── server.ts # MCP server implementation
│ ├── tools/ # Tool implementations
│ │ ├── documentParser.ts
│ │ └── informationExtractor.ts
│ └── utils/ # Utility modules
│ ├── apiClient.ts # HTTP client with retry
│ ├── fileUtils.ts # File operations
│ ├── validators.ts # Input validation
│ └── constants.ts # Configuration constants
├── dist/ # Compiled JavaScript (generated)
├── package.json
├── tsconfig.json
└── README.mdOutput Files
Results are saved to:
- Document parsing:
~/.mcp-upstage/outputs/document_parsing/ - Information extraction:
~/.mcp-upstage/outputs/information_extraction/ - Generated schemas:
~/.mcp-upstage/outputs/information_extraction/schemas/
License
MIT