Package Exports
- ml-curve-fitting
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-curve-fitting) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
Levenberg Marquardt curve-fitting
minimize sum of weighted squared residuals. Javascript version of matlab library from Henri Gavin.
See example for usage
--------- INPUT VARIABLES -----------
func = function of n independent variables, 't', and m parameters, 'p',
returning the simulated model: y_hat = func(t,p,c)
p = n-vector of initial guess of parameter values
t = m-vectors or matrix of independent variables (used as arg to func)
y_dat = m-vectors or matrix of data to be fit by func(t,p)
weight = weighting vector for least squares fit ( weight >= 0 ) ...
inverse of the standard measurement errors
Default: sqrt(d.o.f. / ( y_dat' * y_dat ))
dp = fractional increment of 'p' for numerical derivatives
dp(j)>0 central differences calculated
dp(j)<0 one sided 'backwards' differences calculated
dp(j)=0 sets corresponding partials to zero; i.e. holds p(j) fixed
Default: 0.001;
p_min = n-vector of lower bounds for parameter values
p_max = n-vector of upper bounds for parameter values
c = an optional matrix of values passed to func(t,p,c)
opts = vector of algorithmic parameters
parameter defaults meaning
opts(1) = prnt 3 >1 intermediate results; >2 plots
opts(2) = MaxIter 10*Npar maximum number of iterations
opts(3) = epsilon_1 1e-3 convergence tolerance for gradient
opts(4) = epsilon_2 1e-3 convergence tolerance for parameters
opts(5) = epsilon_3 1e-3 convergence tolerance for Chi-square
opts(6) = epsilon_4 1e-2 determines acceptance of a L-M step
opts(7) = lambda_0 1e-2 initial value of L-M paramter
opts(8) = lambda_UP_fac 11 factor for increasing lambda
opts(9) = lambda_DN_fac 9 factor for decreasing lambda
opts(10) = Update_Type 1 1: Levenberg-Marquardt lambda update
2: Quadratic update
3: Nielsen's lambda update equations
##---------- OUTPUT VARIABLES -----------
p = least-squares optimal estimate of the parameter values
X2 = Chi squared criteria
Henri Gavin, Dept. Civil & Environ. Engineering, Duke Univ. 22 Sep 2013 modified from: [http://octave.sourceforge.net/optim/function/leasqr.html] using references by
Press, et al., Numerical Recipes, Cambridge Univ. Press, 1992, Chapter 15.
Sam Roweis [http://www.cs.toronto.edu/~roweis/notes/lm.pdf]
Manolis Lourakis [http://www.ics.forth.gr/~lourakis/levmar/levmar.pdf]
Hans Nielson [http://www2.imm.dtu.dk/~hbn/publ/TR9905.ps]
Mathworks optimization toolbox reference manual
K. Madsen, H.B., Nielsen, and O. Tingleff
[http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf]