JSPM

ml-logistic-regression

2.0.0
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 27741
  • Score
    100M100P100Q160936F
  • License MIT

Logistic regression

Package Exports

  • ml-logistic-regression
  • ml-logistic-regression/lib/logreg

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-logistic-regression) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

logistic-regression

NPM version build status Test coverage npm download

This is an implementation of the logistic regression. When there are more than 2 classes, the method used is the One VS All.

Installation

$ npm i ml-logistic-regression

Usage

const { Matrix } = require('ml-matrix');

// Our training set (X,Y).
const X = new Matrix([[0, -1], [1, 0], [1, 1], [1, -1], [2, 0], [2, 1], [2, -1], [3, 2], [0, 4], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 4], [1, 10], [1, 12], [2, 10], [2, 11], [2, 14], [3, 11]]);
const Y = Matrix.columnVector([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]);

// The test set (Xtest, Ytest).
const Xtest = new Matrix([
  [0, -2],
  [1, 0.5],
  [1.5, -1],
  [1, 2.5],
  [2, 3.5],
  [1.5, 4],
  [1, 10.5],
  [2.5, 10.5],
  [2, 11.5],
]);
const Ytest = Matrix.columnVector([0, 0, 0, 1, 1, 1, 2, 2, 2]);

// We will train our model.
const logreg = new LogisticRegression({ numSteps: 1000, learningRate: 5e-3 });
logreg.train(X, Y);

// We try to predict the test set.
const finalResults = logreg.predict(Xtest);

// Now, you can compare finalResults with the Ytest, which is what you wanted to have.

License

MIT