JSPM

ml-logistic-regression

1.0.1
  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 27712
  • Score
    100M100P100Q160759F
  • License MIT

Logistic regression

Package Exports

  • ml-logistic-regression
  • ml-logistic-regression/lib/logreg

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-logistic-regression) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

logistic-regression

NPM version build status npm download

This is an implementation of the logistic regression. When there are more than 2 classes, the method used is the One VS All.

Installation

$ npm install --save ml-logistic-regression

Usage

const {Matrix} = require('ml-matrix');

// our training set (X,Y)
var X = new Matrix([[0,-1], [1,0], [1,1], [1,-1], [2,0], [2,1], [2,-1], [3,2], [0,4], [1,3], [1,4], [1,5], [2,3], [2,4], [2,5], [3,4], [1, 10], [1, 12], [2, 10], [2,11], [2, 14], [3, 11]]);
var Y = Matrix.columnVector([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]);

// the test set (Xtest, Ytest)
var Xtest = new Matrix([[0, -2], [1, 0.5], [1.5, -1], [1, 2.5], [2, 3.5], [1.5, 4], [1, 10.5], [2.5, 10.5], [2, 11.5]])
var Ytest = Matrix.columnVector([0, 0, 0, 1, 1, 1, 2, 2, 2]);

// we will train our model
var logreg = new LogisticRegression(numSteps = 1000, learningRate = 5e-3);
logreg.train(X,Y);

// we try to predict the test set
var finalResults = logreg.predict(Xtest);
// Now, you can compare finalResults with the Ytest, which is what you wanted to have.

License

MIT