Package Exports
- ml-random-forest
- ml-random-forest/random-forest.js
- ml-random-forest/src/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-random-forest) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
ml-random-forest
Random forest for classification and regression.
Installation
npm i ml-random-forest
API Documentation
Usage
As classifier
import IrisDataset from 'ml-dataset-iris';
import { RandomForestClassifier as RFClassifier } from 'ml-random-forest';
const trainingSet = IrisDataset.getNumbers();
const predictions = IrisDataset.getClasses().map((elem) =>
IrisDataset.getDistinctClasses().indexOf(elem)
);
const options = {
seed: 3,
maxFeatures: 0.8,
replacement: true,
nEstimators: 25
};
const classifier = new RFClassifier(options);
classifier.train(trainingSet, predictions);
const result = classifier.predict(trainingSet);
const oobResult = classifier.predictOOB();
const confusionMatrix = classifier.getConfusionMatrix();
As regression
import { RandomForestRegression as RFRegression } from 'ml-random-forest';
const dataset = [
[73, 80, 75, 152],
[93, 88, 93, 185],
[89, 91, 90, 180],
[96, 98, 100, 196],
[73, 66, 70, 142],
[53, 46, 55, 101],
[69, 74, 77, 149],
[47, 56, 60, 115],
[87, 79, 90, 175],
[79, 70, 88, 164],
[69, 70, 73, 141],
[70, 65, 74, 141],
[93, 95, 91, 184],
[79, 80, 73, 152],
[70, 73, 78, 148],
[93, 89, 96, 192],
[78, 75, 68, 147],
[81, 90, 93, 183],
[88, 92, 86, 177],
[78, 83, 77, 159],
[82, 86, 90, 177],
[86, 82, 89, 175],
[78, 83, 85, 175],
[76, 83, 71, 149],
[96, 93, 95, 192]
];
const trainingSet = new Array(dataset.length);
const predictions = new Array(dataset.length);
for (let i = 0; i < dataset.length; ++i) {
trainingSet[i] = dataset[i].slice(0, 3);
predictions[i] = dataset[i][3];
}
const options = {
seed: 3,
maxFeatures: 2,
replacement: false,
nEstimators: 200
};
const regression = new RFRegression(options);
regression.train(trainingSet, predictions);
const result = regression.predict(trainingSet);