JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 103
  • Score
    100M100P100Q81680F
  • License MIT

Support Vector Machine in Javascript

Package Exports

  • ml-svm

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (ml-svm) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

ml-svm

Support Vector Machine in Javascript

NPM version build status David deps npm download

Support Vector Machine in Javascript

Installation

npm install ml-svm

Test

$ npm install
$ npm test

Methods

new SVM([options])

Creates a new SVM instance with the given parameters or the default ones.

Arguments

  • options - Object with options for the algorithm

Options

  • C - regularization parameter
  • tol - numerical tolerance
  • max_passes - max number of times to iterate over alphas without changing
  • k - the kind of kernel, it could be lineal, polynomial or radial
  • par - parameter used in the polynomial and the radial function of the kernel

Example

var SVM = require('ml-svm');

// actually this are the default values
var options = {
  C: 10,
  tol: 10e-2,
  max_passes: 100,
  par: 2,
  k: 'lineal'
};

var svm = new SVM(options);

train(X, Y)

Train the SVM with the provided X and Y training set.

Arguments

  • X - An array of training data point in the form (x1, x2)
  • Y - An array of training data labels in the domain {1,-1}

Example

var X = [[0, 1], [4, 6], [2,0]];
var Y = [-1,1,-1];
var mySvm = new SVM();
mySvm.train(X, Y);

getAlphas()

Returns an array containing the Lagrange multipliers.

getThreshold()

Returns the threshold of the model function.

predict([data])

Returns for each data point the predicted label based in the model.

Arguments

  • data - Data point or array of data points.

Example

// creates the SVM
var mySvm = new SVM({tol: 0.01});

// train the model
var X = [[0, 1], [4, 6], [2,0]];
var Y = [-1,1,-1];
mySvm.train(X, Y);

// here you have the answer
var ans = mySvm.predict([2,6]);

export()

Exports the model to a JSON object that can be written to disk and reloaded

load(model)

Returns a new SVM instance based on the model.

Arguments

  • model - JSON object generated with svm.export()

Authors

License

MIT