JSPM

  • Created
  • Published
  • Downloads 744
  • Score
    100M100P100Q62085F
  • License MIT

RAG (Retrieval Augmented Generation) library for MongoDB Vector Search

Package Exports

  • mongodb-rag
  • mongodb-rag/src/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (mongodb-rag) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme


MongoDB RAG Logo

MongoDB-RAG

NPM Version License Issues Pull Requests Downloads MongoDB-RAG

Overview

MongoDB-RAG (Retrieval Augmented Generation) is an NPM module that simplifies vector search using MongoDB Atlas. This library enables developers to efficiently perform similarity search, caching, batch processing, and indexing for fast and accurate retrieval of relevant data.

๐Ÿš€ Features

  • Vector Search: Efficiently retrieves similar documents using MongoDB's Atlas Vector Search.
  • Dynamic Database & Collection Selection: Supports flexible selection of multiple databases and collections.
  • Batch Processing: Handles bulk processing of documents with retry mechanisms.
  • Index Management: Ensures necessary indexes are available and optimized.
  • Caching Mechanism: Provides in-memory caching for frequently accessed data.
  • Advanced Chunking: Supports sliding window, semantic, and recursive chunking strategies.
  • CLI for Scaffolding RAG Apps

๐Ÿš€ Getting Started

1๏ธโƒฃ Install the Package

npm install mongodb-rag dotenv

2๏ธโƒฃ Set Up MongoDB Atlas

  1. Initialize Your App using the CLI:
    npx mongodb-rag init
    This will guide you through setting up your MongoDB connection and save the configuration to .mongodb-rag.json. Make sure to add .mongodb-rag.json to your .gitignore file to keep your credentials secure.
   % npx mongodb-rag init
โœ” Enter your MongoDB connection string: ยท mongodb+srv://<username>:<password>@cluster0.mongodb.net/
โœ” Enter the database name: ยท mongodb-rag
โœ” Enter the collection name: ยท documents
โœ” Select an embedding provider: ยท openai
โœ” Enter your API key (skip if using Ollama): ยท your-embedding-api-key
โœ” Enter the model name: ยท text-embedding-3-small
โœ” Enter the embedding dimensions: ยท 1536
โœ… Configuration saved to .mongodb-rag.json

๐Ÿ” Next steps:
1. Run `npx mongodb-rag test-connection` to verify your setup
2. Run `npx mongodb-rag create-index` to create your vector search index
  1. Create a MongoDB Atlas Cluster (MongoDB Atlas)

  2. Enable Vector Search under Indexes:

    {
      "definition": {
        "fields": [
          { "path": "embedding", "type": "vector", "numDimensions": 1536, "similarity": "cosine" }
        ]
      }
    }

or, use the CLI to create the index:

npx mongodb-rag create-index
  1. Create a .env File using:
    npx mongodb-rag create-env
    This command reads the .mongodb-rag.json file and generates a .env file with the necessary environment variables.

3๏ธโƒฃ Quick Start with CLI

You can generate a fully working RAG-enabled app with MongoDB Atlas Vector Search using:

npx mongodb-rag create-rag-app my-rag-app

This will:

  • Scaffold a new CRUD RAG app with Express and MongoDB Atlas.
  • Set up environment variables for embedding providers.
  • Create API routes for ingestion, search, and deletion.

Then, navigate into your project and run:

cd my-rag-app
npm install
npm run dev

4๏ธโƒฃ Initialize MongoRAG

import { MongoRAG } from 'mongodb-rag';
import dotenv from 'dotenv';
dotenv.config();

const rag = new MongoRAG({
    mongoUrl: process.env.MONGODB_URI,
    database: 'my_rag_db',  // Default database
    collection: 'documents', // Default collection
    embedding: {
        provider: process.env.EMBEDDING_PROVIDER,
        apiKey: process.env.EMBEDDING_API_KEY,
        model: process.env.EMBEDDING_MODEL,
        dimensions: 1536
    }
});
await rag.connect();

5๏ธโƒฃ Ingest Documents

const documents = [
    { id: 'doc1', content: 'MongoDB is a NoSQL database.', metadata: { source: 'docs' } },
    { id: 'doc2', content: 'Vector search is useful for semantic search.', metadata: { source: 'ai' } }
];

await rag.ingestBatch(documents, { database: 'dynamic_db', collection: 'dynamic_docs' });
console.log('Documents ingested.');
const query = 'How does vector search work?';

const results = await rag.search(query, {
    database: 'dynamic_db',
    collection: 'dynamic_docs',
    maxResults: 3
});

console.log('Search Results:', results);

7๏ธโƒฃ Close Connection

await rag.close();

โšก Additional Features

๐ŸŒ Multi-Database & Collection Support

Store embeddings in multiple databases and collections dynamically.

await rag.ingestBatch(docs, { database: 'finance_db', collection: 'reports' });

๐Ÿ”Ž Hybrid Search (Vector + Metadata Filtering)

const results = await rag.search('AI topics', {
    database: 'my_rag_db',
    collection: 'documents',
    maxResults: 5,
    filter: { 'metadata.source': 'ai' }
});

๐Ÿค Contributing

Contributions are welcome! Please fork the repository and submit a pull request.


๐Ÿ“œ License

This project is licensed under the MIT License.

๐Ÿ’ก Examples