JSPM

  • Created
  • Published
  • Downloads 744
  • Score
    100M100P100Q62074F
  • License MIT

RAG (Retrieval Augmented Generation) library for MongoDB Vector Search

Package Exports

  • mongodb-rag
  • mongodb-rag/src/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (mongodb-rag) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme


MongoDB RAG Logo

MongoDB-RAG

NPM Version
Build Status
License
Issues
Pull Requests
Downloads

Overview

MongoDB-RAG (Retrieval Augmented Generation) is an NPM module that simplifies vector search using MongoDB Atlas. This library enables developers to efficiently perform similarity search, caching, batch processing, and indexing for fast and accurate retrieval of relevant data.

๐Ÿš€ Features

  • Vector Search: Efficiently retrieves similar documents using MongoDB's Atlas Vector Search.
  • Dynamic Database & Collection Selection: Supports flexible selection of multiple databases and collections.
  • Batch Processing: Handles bulk processing of documents with retry mechanisms.
  • Index Management: Ensures necessary indexes are available and optimized.
  • Caching Mechanism: Provides in-memory caching for frequently accessed data.
  • Advanced Chunking: Supports sliding window, semantic, and recursive chunking strategies.
  • CLI for Scaffolding RAG Apps

๐Ÿš€ Getting Started

1๏ธโƒฃ Install the Package

npm install mongodb-rag dotenv

2๏ธโƒฃ Set Up MongoDB Atlas

  1. Create a MongoDB Atlas Cluster (MongoDB Atlas)
  2. Enable Vector Search under Indexes:
    {
      "definition": {
        "fields": [
          { "path": "embedding", "type": "vector", "numDimensions": 1536, "similarity": "cosine" }
        ]
      }
    }
  3. Get Your Connection String and store it in .env:
    MONGODB_URI=mongodb+srv://<username>:<password>@cluster0.mongodb.net/
    EMBEDDING_PROVIDER=openai  # Options: openai, deepseek
    EMBEDDING_API_KEY=your-embedding-api-key
    EMBEDDING_MODEL=text-embedding-3-small  # Change based on provider
    VECTOR_INDEX=default

3๏ธโƒฃ Quick Start with CLI

You can generate a fully working RAG-enabled app with MongoDB Atlas Vector Search using:

npx mongodb-rag create-rag-app my-rag-app

This will:

  • Scaffold a new CRUD RAG app with Express and MongoDB Atlas.
  • Set up environment variables for embedding providers.
  • Create API routes for ingestion, search, and deletion.

Then, navigate into your project and run:

cd my-rag-app
npm install
npm run dev

4๏ธโƒฃ Initialize MongoRAG

import { MongoRAG } from 'mongodb-rag';
import dotenv from 'dotenv';
dotenv.config();

const rag = new MongoRAG({
    mongoUrl: process.env.MONGODB_URI,
    database: 'my_rag_db',  // Default database
    collection: 'documents', // Default collection
    embedding: {
        provider: process.env.EMBEDDING_PROVIDER,
        apiKey: process.env.EMBEDDING_API_KEY,
        model: process.env.EMBEDDING_MODEL,
        dimensions: 1536
    }
});
await rag.connect();

5๏ธโƒฃ Ingest Documents

const documents = [
    { id: 'doc1', content: 'MongoDB is a NoSQL database.', metadata: { source: 'docs' } },
    { id: 'doc2', content: 'Vector search is useful for semantic search.', metadata: { source: 'ai' } }
];

await rag.ingestBatch(documents, { database: 'dynamic_db', collection: 'dynamic_docs' });
console.log('Documents ingested.');
const query = 'How does vector search work?';

const results = await rag.search(query, {
    database: 'dynamic_db',
    collection: 'dynamic_docs',
    maxResults: 3
});

console.log('Search Results:', results);

7๏ธโƒฃ Close Connection

await rag.close();

โšก Additional Features

๐ŸŒ Multi-Database & Collection Support

Store embeddings in multiple databases and collections dynamically.

await rag.ingestBatch(docs, { database: 'finance_db', collection: 'reports' });

๐Ÿ”Ž Hybrid Search (Vector + Metadata Filtering)

const results = await rag.search('AI topics', {
    database: 'my_rag_db',
    collection: 'documents',
    maxResults: 5,
    filter: { 'metadata.source': 'ai' }
});

๐Ÿงช Testing

Run tests using:

npm test

Run in watch mode:

npm run test:watch

Check test coverage:

npm run test:coverage

๐Ÿค Contributing

Contributions are welcome! Please fork the repository and submit a pull request.


๐Ÿ“œ License

This project is licensed under the MIT License.

๐Ÿ’ก Examples