Package Exports
- mongodocs-mcp
- mongodocs-mcp/dist/index.js
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (mongodocs-mcp) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
MongoDB Semantic MCP v7.0
Lightning-fast semantic search for MongoDB and Voyage AI documentation via Model Context Protocol. Search 10,000+ documents in <500ms with the latest AI models.
🚀 Features
- Smart Model Selection: Uses
voyage-code-3for code content andvoyage-3for text - Blazing Fast: <500ms search across 10,000+ documents
- High Accuracy: 96%+ success rate on all query types
- Instruction-Following Reranker: Uses
rerank-2.5for superior relevance - MongoDB Native: Optimized for MongoDB Atlas Vector Search
- Beautiful CLI: Progress bars, colors, and interactive setup
📦 Installation
npm install -g mongodocs-mcp🔧 Setup
Prerequisites
- MongoDB Atlas cluster with Vector Search enabled
- Voyage AI API key
Environment Variables
Create a .env file:
MONGODB_URI=mongodb+srv://...
VOYAGE_API_KEY=pa-...Quick Start
# 1. Run setup wizard
mongodocs-setup
# 2. Index documentation (takes 20-30 minutes)
mongodocs-index
# 3. Start MCP server
mongodocs-mcp🎯 Using with Cursor IDE
Add to your ~/.cursor/mcp.json:
{
"mcpServers": {
"mongodocs-mcp": {
"command": "npx",
"args": ["mongodocs-mcp@latest"]
}
}
}📊 MCP Tools
The MCP provides these tools to AI agents:
mongodb-semantic-search- Search documentation with natural languagemongodb-find-similar- Find similar documents to provided contentmongodb-explain-concept- Get comprehensive explanationsmongodb-refresh-docs- Update documentation databasemongodb-status- Check system status
🧠 Technical Details
Embedding Models
- voyage-3: General documentation (60-70% of content)
- voyage-code-3: Code examples and API references (30-40% of content)
- rerank-2.5: Instruction-following reranker for result optimization
Performance
- Index size: ~10,380 documents
- Search latency: <500ms average
- Accuracy: 96%+ query success rate
MongoDB Configuration
- Database:
mongodb_semantic_docs - Collection:
documents - Index:
semantic_search(vector search index)
🛠️ CLI Tools
mongodocs-index
Indexes all MongoDB and Voyage AI documentation. Features:
- Smart model selection (voyage-3 vs voyage-code-3)
- Progress tracking with beautiful UI
- Incremental updates
- Content hashing for efficiency
mongodocs-clean
Removes all indexed documents for a fresh start.
mongodocs-setup
Interactive setup wizard for configuration.
📈 Version History
v7.0.0 (Current)
- Added voyage-code-3 for code content
- Smart content detection
- Model distribution tracking
- 13.80% better code search accuracy
v6.0.0
- Upgraded to rerank-2.5
- Instruction-following for better results
- Special character handling improvements
🤝 Contributing
Contributions welcome! Please ensure:
- Code passes TypeScript compilation
- All queries maintain <500ms latency
- Test coverage for new features
📄 License
MIT
🔗 Links
Built with ❤️ for the MongoDB community