Package Exports
- random
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (random) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
random
Seedable random number generator supporting many common distributions.
Highlights
Welcome to the most random module on npm! 😜
- Simple API (make easy things easy and hard things possible)
- Seedable based on entropy or user input
- Plugin support for different pseudo random number generators (PRNGs)
- Sample from many common distributions
- uniform, normal, poisson, bernoulli, etc
- Validates all user input via ow
- Integrates with seedrandom
- Supports node >= 6 and browser
Install
NOTE: This module is currently an active WIP, and we do not recommend using it yet.
npm install --save random
Usage
const random = require('random')
// quick uniform shortcuts
random.float(min = 0, max = 1) // uniform float in [ min, max )
random.int(min = 0, max = 1) // uniform integer in [ min, max ]
random.boolean() // true or false
// uniform
random.uniform(min = 0, max = 1) // () => [ min, max )
random.uniformInt(min = 0, max = 1) // () => [ min, max ]
random.uniformBoolean() // () => [ false, true ]
// normal
random.normal(mu = 0, sigma = 1)
random.logNormal(mu = 0, sigma = 1)
// bernoulli
random.bernoulli(p = 0.5)
random.binomial(n = 1, p = 0.5)
random.geometric(p = 0.5)
// poisson
random.poisson(lambda = 1)
random.exponential(lambda = 1)
// misc
random.irwinHall(n)
random.bates(n)
random.pareto(alpha)
For convenience, several common uniform samplers are exposed directly:
random.float() // 0.2149383367670885
random.int(0, 100) // 72
random.boolean() // true
All distribution methods return a thunk (function with no params), which will return a series of independent, identically distributed random variables from the specified distribution.
Note that returning a thunk here is more efficient when generating multiple samples from the same distribution.
// create a normal distribution with default params (mu=1 and sigma=0)
const normal = random.normal()
normal() // 0.4855465422678824
normal() // -0.06696771815439678
normal() // 0.7350852689834705
// create a poisson distribution with default params (lambda=1)
const poisson = random.poisson()
poisson() // 0
poisson() // 4
poisson() // 1
You can change the underlying PRNG or its seed as follows:
const seedrandom = require('seedrandom')
// change the underlying pseudo random number generator
// by default, Math.random is used as the underlying PRNG
random.use(seedrandom('foobar'))
// create a new independent random number generator
const rng = random.clone('my-new-seed')
// create a second independent random number generator and use a seeded PRNG
const rng2 = random.clone(seedrandom('kittyfoo'))
// replace Math.random with rng.uniform
rng.patch()
// restore original Math.random
rng.unpatch()
API
Table of Contents
Random
Seedable random number generator supporting many common distributions.
Defaults to Math.random as its underlying pseudorandom number generator.
Type: function (rng)
rng
(RNG | function) Underlying pseudorandom number generator. (optional, defaultMath.random
)
rng
Type: function ()
clone
- See: RNG.clone
Creates a new Random
instance, optionally specifying parameters to
set a new seed.
Type: function (args, seed, opts): Random
args
...anyseed
string? Optional seed for new RNG.opts
object? Optional config for new RNG options.
use
Sets the underlying pseudorandom number generator used via
either an instance of seedrandom
, a custom instance of RNG
(for PRNG plugins), or a string specifying the PRNG to use
along with an optional seed
and opts
to initialize the
RNG.
Type: function (args)
args
...any
Example:
const random = require('random')
random.use('xor128', 'foobar')
// or
random.use(seedrandom('kittens'))
// or
random.use(Math.random)
patch
Patches Math.random
with this Random instance's PRNG.
Type: function ()
unpatch
Restores a previously patched Math.random
to its original value.
Type: function ()
next
Convenience wrapper around this.rng.next()
Returns a floating point number in [0, 1).
Type: function (): number
float
Samples a uniform random floating point number, optionally specifying lower and upper bounds.
Convence wrapper around random.uniform()
Type: function (min, max): number
min
number Lower bound (float, inclusive) (optional, default0
)max
number Upper bound (float, exclusive) (optional, default1
)
int
Samples a uniform random integer, optionally specifying lower and upper bounds.
Convence wrapper around random.uniformInt()
Type: function (min, max): number
min
number Lower bound (integer, inclusive) (optional, default0
)max
number Upper bound (integer, inclusive) (optional, default1
)
integer
Samples a uniform random integer, optionally specifying lower and upper bounds.
Convence wrapper around random.uniformInt()
Type: function (min, max): number
min
number Lower bound (integer, inclusive) (optional, default0
)max
number Upper bound (integer, inclusive) (optional, default1
)
bool
Samples a uniform random boolean value.
Convence wrapper around random.uniformBoolean()
Type: function (): boolean
boolean
Samples a uniform random boolean value.
Convence wrapper around random.uniformBoolean()
Type: function (): boolean
uniform
Generates a Continuous uniform distribution.
Type: function (args, min, max): function
args
...anymin
number Lower bound (float, inclusive) (optional, default0
)max
number Upper bound (float, exclusive) (optional, default1
)
uniformInt
Generates a Discrete uniform distribution.
Type: function (args, min, max): function
args
...anymin
number Lower bound (integer, inclusive) (optional, default0
)max
number Upper bound (integer, inclusive) (optional, default1
)
uniformBoolean
Generates a Discrete uniform distribution,
with two possible outcomes, true
or `false.
This method is analogous to flipping a coin.
Type: function (): function
normal
Generates a Normal distribution.
Type: function (args, mu, sigma): function
args
...anymu
number Mean (optional, default0
)sigma
number Standard deviation (optional, default1
)
logNormal
Generates a Log-normal distribution.
Type: function (args, mu, sigma): function
args
...anymu
number Mean of underlying normal distribution (optional, default0
)sigma
number Standard deviation of underlying normal distribution (optional, default1
)
bernoulli
Generates a Bernoulli distribution.
Type: function (args, p): function
args
...anyp
number Success probability of each trial. (optional, default0.5
)
binomial
Generates a Binomial distribution.
Type: function (args, n, p): function
args
...anyn
number Number of trials. (optional, default1
)p
number Success probability of each trial. (optional, default0.5
)
geometric
Generates a Geometric distribution.
Type: function (args, p): function
args
...anyp
number Success probability of each trial. (optional, default0.5
)
poisson
Generates a Poisson distribution.
Type: function (args, lambda): function
args
...anylambda
number Mean (lambda > 0) (optional, default1
)
exponential
Generates an Exponential distribution.
Type: function (args, lambda): function
args
...anylambda
number Inverse mean (lambda > 0) (optional, default1
)
irwinHall
Generates an Irwin Hall distribution.
Type: function (args, n): function
args
...anyn
number Number of uniform samples to sum (n >= 0)
bates
Generates a Bates distribution.
Type: function (args, n): function
args
...anyn
number Number of uniform samples to average (n >= 1)
pareto
Generates a Pareto distribution.
Type: function (args, alpha): function
args
...anyalpha
number Alpha
Todo
Distributions
- uniform
- uniformInt
- uniformBoolean
- normal
- logNormal
- chiSquared
- cauchy
- fischerF
- studentT
- bernoulli
- binomial
- negativeBinomial
- geometric
- poisson
- exponential
- gamma
- hyperExponential
- weibull
- beta
- laplace
- irwinHall
- bates
- pareto
Generators
- pluggable prng
- more prng from boost
- custom entropy
Misc
- browser support via rollup
- basic docs
- basic tests
- first release!
Related
- d3-random - D3's excellent random number generation library.
- seedrandom - Seedable pseudo random number generator.
- random-int - For the common use case of generating uniform random ints.
- random-float - For the common use case of generating uniform random floats.
- randombytes - Random crypto bytes for Node.js and the browser.
Credit
Huge shoutout to Roger Combs for donating the random
npm package for this project!
Lots of inspiration from d3-random (@mbostock and @svanschooten).
Some distributions and PRNGs are ported from C++ boost::random.
License
MIT © Travis Fischer