Package Exports
- react-native-nitro-modules
- react-native-nitro-modules/lib/commonjs/index.js
- react-native-nitro-modules/lib/module/index.js
- react-native-nitro-modules/package.json
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (react-native-nitro-modules) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
react-native-nitro-modules is a core library that contains highly efficient statically compiled JS to C++ bindings.
It uses JSI to generate C++ templates that can bridge virtually any JS type to a C++ type with minimal overhead.
Installation
Inside an app
Install react-native-nitro-modules as a dependency in your react-native app:
npm i react-native-nitro-modules
cd ios && pod installInside a nitro module library
If you are building a nitro module yourself, add react-native-nitro-modules as a peerDependency into your library's package.json:
{
...
"peerDependencies": {
...
"react-native-nitro-modules": "*"
},
}Then install react-native-nitro-modules as a normal dependency in your library's example/ app as seen above.
Usage
react-native-nitro-modules can either be used with-, or without nitrogen, or mixed (some objects are automatically generated, some manually).
With Nitrogen
When using Nitrogen, all the bindings are automatically generated. You only need to implement C++, Swift or Kotlin interfaces inside your codebase.
Without Nitrogen
All C++ bindings are bridged to JS using "Hybrid Objects".
A Hybrid Object can have both methods and properties (get and set).
Create a C++ Hybrid Object by inheriting from HybridObject:
#include <NitroModules/HybridObject.hpp>
using namespace margelo::nitro;
class MyHybridObject: public HybridObject {
public:
explicit MyHybridObject(): HybridObject(TAG) {}
public:
// Property (get)
double getNumber() { return 13; }
// Property (set)
void setNumber(double value) { }
// Method
double add(double left, double right) { return left + right; }
public:
void loadHybridMethods() override {
// Call base method to make sure we properly inherit `toString()` and `equals()`
HybridObject::loadHybridMethods();
// Register all methods that need to be exposed to JS
registerHybrids(this, [](Prototype& prototype) {
prototype.registerHybridGetter("number", &MyHybridObject::getNumber);
prototype.registerHybridSetter("number", &MyHybridObject::setNumber);
prototype.registerHybridMethod("add", &MyHybridObject::add);
});
}
private:
static constexpr auto TAG = "MyHybrid";
};The MyHybridObject can then be registered in the HybridObjectRegistry at app startup:
#include <NitroModules/HybridObjectRegistry.hpp>
// Call this at app startup to register the HybridObjects
void load() {
HybridObjectRegistry::registerHybridObjectConstructor(
"MyHybrid",
[]() -> std::shared_ptr<HybridObject> {
return std::make_shared<MyHybridObject>();
}
);
}Inside your MyHybridObject, you can use standard C++ types which will automatically be converted to JS using Nitro's JSIConverter<T> interface.
The following C++ / JS types are supported out of the box:
| JS Type | C++ Type | Swift Type | Kotlin Type |
|---|---|---|---|
number |
double / int / float |
Double |
Double |
boolean |
bool |
Bool |
Boolean |
string |
std::string |
String |
String |
bigint |
int64_t / uint64_t |
Int64 |
Long |
T[] |
std::vector<T> |
[T] |
Array<T> / PrimitiveArray |
[A, B, C, ...] |
std::tuple<A, B, C, ...> |
(A, B, C) 🟡 (#38) |
❌ |
A | B | C | ... |
std::variant<A, B, C, ...> |
Variant_A_B_C |
Variant_A_B_C |
Record<string, T> |
std::unordered_map<std::string, T> |
Dictionary<String, T> |
Map<std::string, T> |
T? |
std::optional<T> |
T? |
T? |
(T...) => void |
std::function<void (T...)> |
@escaping (T...) -> Void |
(T...) -> Unit |
(T...) => R |
std::function<std::shared_ptr<Promise<R>> (T...)> |
(T...) -> Promise<T> |
(T...) -> Promise<T> |
Sync<(T...) => R> |
std::function<R (T...)> |
@escaping (T...) -> R |
(T...) -> R |
Error |
std::exception_ptr |
Error |
Throwable |
Promise<T> |
std::shared_ptr<Promise<T>> |
Promise<T> |
Promise<T> |
AnyMap |
std::shared_ptr<AnyMap> |
AnyMap |
AnyMap |
ArrayBuffer |
std::shared_ptr<ArrayBuffer> |
ArrayBuffer |
ArrayBuffer |
Date |
std::chrono::system_clock::time_point |
Date |
java.time.Instant |
..any HybridObject |
std::shared_ptr<HybridObject> |
HybridObject |
HybridObject |
..any interface |
struct T |
struct T |
data class T |
..any enum |
enum T |
enum T |
enum T |
..any union |
enum T |
enum T |
enum T |
Since the JSIConverter<T> is just a template, you can extend it with any other custom types by overloading the interface.
For example, to add support for an enum, overload JSIConverter<MyEnum>:
#include <NitroModules/JSIConverter.hpp>
enum class MyEnum {
FIRST = 0,
SECOND = 1
};
namespace margelo::nitro {
template <>
struct JSIConverter<MyEnum> {
static inline MyEnum fromJSI(jsi::Runtime& runtime, const jsi::Value& arg) {
int intValue = JSIConverter<int>::fromJSI(runtime, arg);
return static_cast<MyEnum>(intValue);
}
static inline jsi::Value toJSI(jsi::Runtime& runtime, MyEnum arg) {
int intValue = static_cast<int>(arg);
return JSIConverter<int>::toJSI(runtime, intValue);
}
};
}Once the JSIConverter<T> for MyEnum is defined, you can use the type MyEnum in C++ methods, getters and setters of HybridObjects.
And on the JS side, you can simply treat the returned number (int) as a MyEnum:
enum MyEnum {
FIRST = 0,
SECOND = 1
}
const value = myHybridObject.getEnumValue() // <-- typed as `MyEnum` instead of `number`Make sure to always include the header that defines the JSIConverter<MyEnum> overload inside the MyHybridObject file, as this is where the JSIConverter<T> overloads are accessed from.
Nitrogen can automatically generate such JSIConverter<T> extensions for enums, TypeScript unions, and even structs/objects - so it is generally recommended to use nitrogen.