JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 993880
  • Score
    100M100P100Q194174F
  • License MIT

rehype plugin to transform inline and block math with KaTeX

Package Exports

  • rehype-katex

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (rehype-katex) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

rehype-katex

Build Coverage Downloads Size Sponsors Backers Chat

rehype plugin to transform <span class=math-inline> and <div class=math-display> with KaTeX.

Install

This package is ESM only: Node 12+ is needed to use it and it must be imported instead of required.

npm:

npm install rehype-katex

Use

Say we have the following file, example.html:

<p>
  Lift(<span class="math math-inline">L</span>) can be determined by Lift Coefficient
  (<span class="math math-inline">C_L</span>) like the following equation.
</p>

<div class="math math-display">
  L = \frac{1}{2} \rho v^2 S C_L
</div>

And our module, example.js, looks as follows:

import {readSync} from 'to-vfile'
import {unified} from 'unified'
import rehypeParse from 'rehype-parse'
import rehypeKatex from 'rehype-katex'
import rehypeDocument from 'rehype-document'
import rehypeStringify from 'rehype-stringify'

const file = readSync('example.html')

unified()
  .use(rehypeParse, {fragment: true})
  .use(rehypeKatex)
  .use(rehypeDocument, {
    css: 'https://cdn.jsdelivr.net/npm/katex@0.13.13/dist/katex.min.css'
  })
  .use(rehypeStringify)
  .process(file)
  .then((file) => {
    console.log(String(file))
  })

Now, running node example yields:

<p>
  Lift(<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>L</mi></mrow><annotation encoding="application/x-tex">L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal">L</span></span></span></span></span>) can be determined by Lift Coefficient
  (<span class="math math-inline"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>C</mi><mi>L</mi></msub></mrow><annotation encoding="application/x-tex">C_L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">L</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span>) like the following equation.
</p>

<div class="math math-display"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><semantics><mrow><mi>L</mi><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi>ρ</mi><msup><mi>v</mi><mn>2</mn></msup><mi>S</mi><msub><mi>C</mi><mi>L</mi></msub></mrow><annotation encoding="application/x-tex">L = \frac{1}{2} \rho v^2 S C_L</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathnormal">L</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.00744em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord mathnormal">ρ</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mord mathnormal" style="margin-right:0.05764em;">S</span><span class="mord"><span class="mord mathnormal" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathnormal mtight">L</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></div>

API

This package exports no identifiers. The default export is rehypeKatex.

unified().use(rehypeKatex[, options])

Transform <span class="math-inline"> and <div class="math-display"> with KaTeX.

options

options.throwOnError

Throw if a KaTeX parse error occurs (boolean, default: false). See KaTeX options.

options.<*>

All other options, except for displayMode, are passed to KaTeX.

Security

Use of rehype-katex renders user content with KaTeX, so any vulnerability in KaTeX can open you to a cross-site scripting (XSS) attack.

Always be wary of user input and use rehype-sanitize.

Contribute

See contributing.md in remarkjs/.github for ways to get started. See support.md for ways to get help.

This project has a code of conduct. By interacting with this repository, organization, or community you agree to abide by its terms.

License

MIT © Junyoung Choi