JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 267
  • Score
    100M100P100Q81933F
  • License MIT

Engineering statistics and data analysis

Package Exports

  • stats-analysis

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (stats-analysis) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

Statistics and Data Analysis

Build Status

Mini javascript statistics library for nodejs or the browser.
No production dependencies.

Current Library Coverage

  • Standard Deviation
  • Mean
  • Median
  • Median Absolute Deviation (MAD)
  • Outlier Detection (using Iglewicz and Hoaglin's method)
  • Outlier Filter / Removal
  • More?

Installation

  $ npm install stats-analysis

Usage

  var stats = require("./stats") // include statistics library
  var arr = [-2, 1, 2, 2, 3, 3, 4, 15];

  //standard deviation
  stats.stdev(arr).toFixed(2) * 1 // Round to 2dp and convert to number
  > 4.88

  //mean
  stats.mean(arr).toFixed(2) * 1 
  > 3.86

  //median
  stats.median(arr)
  > 3

  //median absolute deviation
  stats.MAD(arr)
  > 1

  // outlier detection. Values above threshold are potential outliers 
  // 3 params: value-to-test, array, threshold = 3.5
  stats.isOutlier(-10, arr)  // Default theshold of 3.5 used
  > true

  stats.isOutlier(-3, arr, 5) // Pass higher threshold
  > false

  // filter outliers.  
  // 2 params: array, threshold = 3.5
  stats.filterOutliers(arr) // Default threshold of 3.5 used
  > [1, 2, 2, 3, 3, 4] 

  stats.filterOutliers(arr, 2.5) // Pass lower threshold
  > [-2, 1, 2, 2, 3, 3, 4] 

Tests

Mocha is used as the testing framework.
To run the tests, simply run the following commands:

  $ npm install  // Grab mocha
  $ npm test     // Run tests

Resources

Engineering statistics handbook:
http://www.itl.nist.gov/div898/handbook/index.htm

Contribute to the library

  1. Fork it!
  2. Create your feature branch: git checkout -b my-new-feature
  3. Commit your changes: git commit -m 'Add some feature'
  4. Push to the branch: git push origin my-new-feature
  5. Submit a pull request :D

License

MIT