JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 6346
  • Score
    100M100P100Q116892F
  • License MIT

Infer types from columns in JSON

Package Exports

  • type-analyzer

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (type-analyzer) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

type-analyzer

Infer data types from CSV columns.

Overview

This package provides a single interface for generating the datatype for a given row-column formatted dataset. We support the following datatypes:

  • DATE
  • TIME
  • DATETIME
  • NUMBER
  • INT
  • FLOAT
  • CURRENCY
  • PERCENT
  • STRING
  • ARRAY
  • OBJECT
  • ZIPCODE
  • BOOLEAN
  • GEOMETRY
  • GEOMETRY_FROM_STRING
  • PAIR_GEOMETRY_FROM_STRING
  • NONE

Installation

npm install type-analyzer

Usage

Analyzer.computeColMeta(data, rules, options) (Function)

Parameters

  • data Array required An array of row object
  • rules Array optional An array of custom regex rules
  • options Object optional Option object
  • options.ignoreDataTypes Array optional Data types to ignore
var Analyzer = require('type-analyzer').Analyzer;
var data = [
    {
        "ST_AsText": "MULTIPOLYGON (((30 20, 45 40, 10 40, 30 20)), ((15 5, 40 10, 10 20, 5 10, 15 5)))",
        "name": "san_francisco",
        "lat": "37.7749295",
        "lng": "-122.4194155",
        "launch_date": "2010-06-05",
        "added_at": "2010-06-05 12:00"
    },
    {
        "ST_AsText": "MULTIPOLYGON (((30 20, 45 40, 10 40, 30 20)), ((15 5, 40 10, 10 20, 5 10, 15 5)))",
        "name": "paris",
        "lat": "48.856666",
        "lng": "2.3509871",
        "launch_date": "2011-12-04",
        "added_at": "2010-06-05 12:00"
    },
]
var colMeta = Analyzer.computeColMeta(data);
  • rules

You can pass in an array of custom rules. For example. if you want to ensure that a column full of ids represented as numbers is identified as a column of strings. Rules can be matched with either exact name of the column, or regex used to match names. Note: Analyzer prefers rules using name over regex since better performance.

var Analyzer = require('type-analyzer').Analyzer;

var colMeta = Analyzer.computeColMeta(data, [{name: 'id', dataType: 'STRING'}]);
// or
var colMeta = Analyzer.computeColMeta(data, [{regex: /id/, dataType: 'STRING'}]);
  • options.ignoreDataTypes

You can also pass in ignoreDataTypes to ignore certain types. This will improve your type checking performance.

var DATA_TYPES = require('type-analyzer').DATA_TYPES;

var colMeta = Analyzer.computeColMeta(arr, [], {ignoredDataTypes: DATA_TYPES.CURRENCY})[0].type,

And it will short cut around the usual analysis system and give you back the column formatted as you'd expect.

DATA_TYPES

You can import all availale types as a constant.

Update

Breaking changes with v1.0.0: Regex has moved into src, but can more easily be accessed from the module.exports from the root. As part of a larger clean up many extraneous util files were removed.