Package Exports
- zarrita
- zarrita/core
- zarrita/lib/errors
- zarrita/lib/indexing
- zarrita/lib/ops
- zarrita/storage/fsstore
- zarrita/storage/httpstore
Readme
Here be dragons (in JavaScript). Zarrita.js is a minimal, exploratory implementation of the Zarr version 3.0 core protocol.
This repo is meant to mirror zarrita, the python implementation. The test suite in
test/index.test.js mirrors the doctest from zarrita, and tests both the default MemoryStore and Node.js-specific
FileSystemStore (located in ./src/fsstore.js).
TODO:
- Implement simple
HTTPStore.
Usage:
import FileSystemStore from './src/fsstore.js';
import { create_hierarchy, slice, registry } from './src/index.js';
import GZip from 'numcodecs/gzip';
// codec registry is empty by default, so must add codecs
registry.set(GZip.codecId, () => GZip);
// Clean slate
import fs from 'fs';
fs.rmdirSync('test.zr3', { recursive: true });
// Create store
const store = new FileSystemStore('test.zr3');
(async () => {
// Create hierarchy
const h = await create_hierarchy(store);
// Create Array
await h.create_array('/arthur/dent', {
shape: [5, 10],
dtype: '<i4',
chunk_shape: [2, 5],
compressor: new GZip(1),
attrs: { question: 'life', answer: 42 },
});
// Create Array without compressor
await h.create_array('/deep/thought', {
shape: 7500000,
dtype: '>f4',
chunk_shape: 42,
compressor: null,
});
// Create a group
await h.create_group('/tricia/mcmillan', {
attrs: { heart: 'gold', improbability: 'infinite' },
});
// View whole hierarchy
const nodes = await h.get_nodes();
console.log(nodes);
// Map(7) {
// '/arthur/dent' => 'array',
// '/arthur' => 'implicit_group',
// '/' => 'implicit_group',
// '/deep/thought' => 'array',
// '/deep' => 'implicit_group',
// '/tricia/mcmillan' => 'explicit_group',
// '/tricia' => 'implicit_group'
// }
// Open an array
const a = await h.get('/arthur/dent');
console.log(await a.get(null));
// {
// data: Int32Array(50) [
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// ],
// shape: [ 5, 10 ],
// stride: [ 10, 1 ]
// }
await a.set([0, null], 42);
console.log(await a.get(null));
// {
// data: Int32Array(50) [
// 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// ],
// shape: [ 5, 10 ],
// stride: [ 10, 1 ]
// }
await a.set([null, 3], 42);
console.log(await a.get(null));
// {
// data: Int32Array(50) [
// 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
// 0, 0, 0, 42, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 42, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 42, 0, 0, 0, 0, 0, 0,
// 0, 0, 0, 42, 0, 0, 0, 0, 0, 0,
// ],
// shape: [ 5, 10 ],
// stride: [ 10, 1 ]
// }
// np.arange(50).reshape(5, 10);
await a.set(null, { data: new Int32Array([...Array(50).keys()]), shape: [5, 10] });
console.log(await a.get(null));
// {
// data: Int32Array(50) [
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
// 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
// 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
// 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
// 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
// ],
// shape: [ 5, 10 ],
// stride: [ 10, 1 ]
// }
const selection = [slice(1,4), slice(2,7)];
console.log(await a.get(selection));
// {
// data: Int32Array(15) [
// 12, 13, 14, 15, 16,
// 22, 23, 24, 25, 26,
// 32, 33, 34, 35, 36,
// ],
// shape: [ 3, 5 ],
// stride: [ 5, 1 ]
// }
})();$ tree test.zr3
test.zr3
├── data
│ └── root
│ └── arthur
│ └── dent
│ ├── c0
│ │ ├── 0
│ │ └── 1
│ ├── c1
│ │ ├── 0
│ │ └── 1
│ └── c2
│ ├── 0
│ └── 1
├── meta
│ └── root
│ ├── arthur
│ │ └── dent.array.json
│ ├── deep
│ │ └── thought.array.json
│ └── tricia
│ └── mcmillan.group.json
└── zarr.json
12 directories, 10 filesCompatibility with ndarray
Zarrita.js has no dependencies other than numcodecs.js (for decoding compressed arrays). The
ZarrArray.get and ZarrArray.get_chunk methods return an simple object with data, shape,
and stride properties. This is to avoid bundling an extra dependency, and enable compatilbility
with other array libraries. Similarly, setting a ZarrArray expects an object with these properties,
which means you can set a slice of a ZarrArray using ndarray.
import ndarray from 'ndarray';
const selection = [slice(1,4), slice(2,7)];
const { data, shape, stride } = await a.get(selection);
const arr = ndarray(data, shape, stride);
/* perform some array operations */
await a.set(selection, arr); // set using ndarray!Development
$ npm install && npm test