JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 4
  • Score
    100M100P100Q41603F
  • License MIT

Zero-shot multimodal classification SDK - classify text and images with custom labels, no training required

Package Exports

  • zerolabel
  • zerolabel/dist/index.js

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (zerolabel) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

zerolabel

zerolabel

Zero-shot classification made ridiculously simple

npm version TypeScript


✨ What if you could classify anything without training models?

import { classify } from 'zerolabel';

const results = await classify({
  texts: ['I love this product!'],
  labels: ['positive', 'negative', 'neutral'],
  apiKey: process.env.INFERENCE_API_KEY
});

// Done. No training, no datasets, no complexity.

That's it. Text, images, or both. Any labels you want. Results in milliseconds.


🤔 The Problem

Building classification usually means:

  • ❌ Collecting thousands of labeled examples
  • ❌ Training models for hours/days
  • ❌ Managing ML infrastructure
  • ❌ Retraining when you need new categories

zerolabel solves this in one line of code.


🤔 The Solution

import { classify } from 'zerolabel';

// Classify anything, instantly
const results = await classify({
  texts: ['I love this product!'],
  labels: ['positive', 'negative', 'neutral'],
  apiKey: process.env.INFERENCE_API_KEY
});

console.log(results[0].predicted_label); // 'positive'

That's it. No training, no infrastructure, no complexity.


⚡ Installation

npm install zerolabel

🚀 Examples

Text Classification

await classify({
  texts: ['Amazing product!', 'Worst purchase ever', 'It\'s okay'],
  labels: ['positive', 'negative', 'neutral'],
  apiKey: process.env.INFERENCE_API_KEY
});

Image Classification

await classify({
  images: ['data:image/jpeg;base64,...'],
  labels: ['cat', 'dog', 'bird'],
  apiKey: process.env.INFERENCE_API_KEY
});

Both Together (Multimodal)

await classify({
  texts: ['Check out this cute animal!'],
  images: ['data:image/jpeg;base64,...'],
  labels: ['cute cat', 'cute dog', 'not cute'],
  apiKey: process.env.INFERENCE_API_KEY
});

Custom Categories

await classify({
  texts: ['Fix login bug', 'Add dark mode', 'Server is down!'],
  labels: ['bug_report', 'feature_request', 'incident'],
  apiKey: process.env.INFERENCE_API_KEY
});

🎯 Real-World Use Cases

Use Case Labels Input
Email Triage ['urgent', 'normal', 'spam'] Email content
Content Moderation ['safe', 'nsfw', 'spam'] User posts + images
Support Tickets ['bug', 'feature', 'question'] Ticket descriptions
Document Classification ['invoice', 'receipt', 'contract'] Document images
Sentiment Analysis ['positive', 'negative', 'neutral'] Reviews/feedback

🏗️ How It Works

  1. You provide: Text/images and your custom labels
  2. We handle: The AI model (Google Gemma 3-27B), prompting, and inference
  3. You get: Instant predictions with confidence scores
Powered by Inference.net

Powered by inference.net infrastructure


📊 Response Format

[
  {
    "text": "I love this product!",
    "predicted_label": "positive", 
    "confidence": 95.2,
    "probabilities": {
      "positive": 0.952,
      "negative": 0.048
    }
  }
]

🔧 Configuration

import { ZeroLabelClient } from 'zerolabel';

const client = new ZeroLabelClient({
  apiKey: process.env.INFERENCE_API_KEY,
  maxRetries: 3
});

const results = await client.classify({
  texts: ['Hello world'],
  labels: ['greeting', 'question']
});

🔑 Getting Your API Key

  1. Sign up at inference.net
  2. Get your API key from the dashboard
  3. Set it as INFERENCE_API_KEY environment variable
export INFERENCE_API_KEY="your-key-here"

💡 Why zerolabel?

Traditional ML zerolabel
Weeks to collect data Instant
Hours to train models No training needed
Complex infrastructure One npm install
Fixed categories Any labels you want
Expensive compute Pay per request

🌟 Live Demo

Try it yourself: zerolabel.dev


📚 API Reference

classify(options)

Parameter Type Required Description
texts string[] No* Array of texts to classify
images string[] No* Array of base64 image data URIs
labels string[] Your classification categories
apiKey string Your inference.net API key (set as INFERENCE_API_KEY)
criteria string No Additional classification criteria

*At least one of texts or images is required


🛠️ TypeScript Support

Full TypeScript definitions included:

import type { 
  ClassificationInput, 
  ClassificationResult,
  ZeroLabelConfig 
} from 'zerolabel';

❓ FAQ

Q: What models does this use?
A: Google Gemma 3-27B, optimized for classification tasks.

Q: How accurate is it?
A: Comparable to fine-tuned models for most classification tasks, especially with descriptive labels.

Q: Can I use custom models?
A: No, we use inference.net's infrastructure with optimized models for best performance.

Q: Is there a rate limit?
A: Limits depend on your inference.net plan.


🤝 Contributing

Issues and PRs welcome! See our GitHub repo.


📄 License

MIT - Use it however you want!


Made with ❤️ for developers who want AI classification without the complexity

WebsiteGitHubnpm