Package Exports
- buffer-layout
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (buffer-layout) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
buffer-layout
buffer-layout is a utility module implemented in pure JavaScript that supports translations between JavaScript values and Buffers. It is made available through github and released under the MIT license.
Layout support is provided for these types of data:
- Signed and unsigned integral values from 1 to 6 bytes in length, in little-endian or big-endian format;
- Float and double values (also little-endian or big-endian);
- Sequences of instances of an arbitrary layout;
- Structures with named fields containing arbitrary layouts;
- Unions of variant layouts where the type of data is recorded in a prefix value, another layout element, or provided externally;
- Bit fields within 8, 16, 24, or 32-bit unsigned integers, numbering from the least or most significant bit;
- NUL-terminated C strings;
- Blobs of fixed or variable-length raw data.
Installation
Development and testing is done using Node.js, supporting versions 0.12
and later. Install with npm install buffer-layout
.
Examples
All examples are from the test/examples.js
unit test and assume the
following context:
var assert = require("assert"),
lo = require("buffer-layout");
The examples give only a taste of what can be done. Structures, unions, and sequences can nest; union discriminators can be within the union or external to it; sequence and blob lengths may be fixed or read from the buffer.
For full details see the documentation.
Four-element array of 16-bit signed little-endian integers
The C definition:
int16_t arr[4] = { 1, -1, 3, -3 };
The buffer-layout way:
var ds = lo.seq(lo.s16(), 4),
b = new Buffer(8);
ds.encode([1, -1, 3, -3], b);
assert.equal(Buffer('0100ffff0300fdff', 'hex').compare(b), 0);
assert.deepEqual(ds.decode(b), [1, -1, 3, -3]);
A native C struct
on a 32-bit little-endian machine
The C definition:
struct ds {
uint8_t v;
uint32_t u32;
} st;
The buffer-layout way:
var ds = lo.struct([lo.u8('v'),
lo.seq(lo.u8(), 3), // alignment padding
lo.u32('u32')]),
b = new Buffer(8);
b.fill(0xbd);
ds.encode({v:1, u32: 0x12345678}, b);
assert.equal(Buffer('01bdbdbd78563412', 'hex').compare(b), 0);
assert.deepEqual(ds.decode(b), {v: 1, u32: 0x12345678});
Note that the C language requires padding which must be explicitly added in the buffer-layout structure definition. Since the padding is not accessible, the corresponding layout has no property.
See Structure.
A packed C struct
on a 32-bit little-endian machine
The C definition:
struct ds {
uint8_t v;
uint32_t u32;
} __attribute__((__packed__)) st;
The buffer-layout way:
var ds = lo.struct([lo.u8('v'),
lo.u32('u32')]),
b = new Buffer(5);
b.fill(0xbd);
ds.encode({v:1, u32: 0x12345678}, b);
assert.equal(Buffer('0178563412', 'hex').compare(b), 0);
assert.deepEqual(ds.decode(b), {v: 1, u32: 0x12345678});
A tagged union of 4-byte values
Assume a 5-byte packed structure where the interpretation of the last four bytes depends on the first byte. The C definition:
struct {
uint8_t t;
union ds {
uint8_t u8[4]; // default interpretation
int16_t s16[2]; // when t is 'h'
uint32_t u32; // when t is 'w'
float f32; // when t is 'f'
} u;
} __attribute__((__packed__)) un;
The buffer-layout way:
var t = lo.u8('t'),
un = lo.union(t, lo.seq(lo.u8(), 4, 'u8')),
u32 = un.addVariant('w'.charCodeAt(0), lo.u32(), 'u32'),
s16 = un.addVariant('h'.charCodeAt(0), lo.seq(lo.s16(), 2), 's16'),
f32 = un.addVariant('f'.charCodeAt(0), lo.f32(), 'f32'),
b = new Buffer(un.span);
assert.deepEqual(un.decode(Buffer('7778563412', 'hex')), { u32: 0x12345678 });
assert.deepEqual(un.decode(Buffer('660000bd41', 'hex')), { f32: 23.625 });
assert.deepEqual(un.decode(Buffer('a5a5a5a5a5', 'hex')), { t: 0xa5, u8:[ 0xa5, 0xa5, 0xa5, 0xa5 ]});
s16.encode({s16:[123, -123]}, b);
assert.equal(Buffer('687b0085ff', 'hex').compare(b), 0);
See Union.
Packed bit fields on a little-endian machine
The C definition:
struct ds {
unsigned int b00l03: 3;
unsigned int b03l01: 1;
unsigned int b04l18: 24;
unsigned int b1Cl04: 4;
} st;
The buffer-layout way:
var ds = lo.bits(lo.u32()),
b = new Buffer(4);
ds.addField(3, 'b00l03');
ds.addField(1, 'b03l01');
ds.addField(24, 'b04l18');
ds.addField(4, 'b1Cl04');
b.fill(0xff);
ds.encode({b00l03:3, b04l18:24, b1Cl04:4}, b);
assert.equal(Buffer('8b010040', 'hex').compare(b), 0);
assert.deepEqual(ds.decode(b), {b00l03:3, b03l01:1, b04l18:24, b1Cl04:4});
See BitStructure.
A NUL-terminated C string
The C definition:
const char str[] = "hi!";
The buffer-layout way:
var ds = lo.cstr(),
b = new Buffer(8);
ds.encode('hi!', b);
var slen = ds.getSpan(b);
assert.equal(slen, 4);
assert.equal(Buffer('68692100', 'hex').compare(b.slice(0, slen)), 0);
assert.equal(ds.decode(b), 'hi!');
See CString.
A fixed-length block of data offset within a buffer
The buffer-layout way:
var ds = lo.blob(4),
b = Buffer('0102030405060708', 'hex');
assert.equal(Buffer('03040506', 'hex').compare(ds.decode(b, 2)), 0);
See Blob.
A variable-length array of pairs of C strings
The buffer-layout way:
var pr = lo.seq(lo.cstr(), 2),
n = lo.u8('n'),
vla = lo.seq(pr, lo.offset(n, -1), 'a'),
st = lo.struct([n, vla], 'st'),
b = new Buffer(32),
arr = [['k1', 'v1'], ['k2', 'v2'], ['k3', 'etc']];
b.fill(0);
st.encode({a: arr}, b);
var span = st.getSpan(b);
assert.equal(span, 20);
assert.equal(Buffer('036b31007631006b32007632006b330065746300', 'hex').compare(b.slice(0, span)), 0);
assert.deepEqual(st.decode(b), { n:3, a:arr});
See OffsetLayout.
Tagged values, or variable-length unions
Storing arbitrary date using a leading byte to identify the content then a value that takes up only as much room as is necessary.
The example also shows how to extend the variant recognition API to support abitrary constant without consuming space for them in the encoded union. This could be used to make something similar to BSON.
Here's the code that defines the union, the variants, and the
recognition of true
and false
values for b
as distinct variants:
var un = lo.union(lo.u8('t')),
u8 = un.addVariant('B'.charCodeAt(0), lo.u8(), 'u8'),
s16 = un.addVariant('h'.charCodeAt(0), lo.s16(), 's16'),
s48 = un.addVariant('Q'.charCodeAt(0), lo.s48(), 's48'),
cstr = un.addVariant('s'.charCodeAt(0), lo.cstr(), 'str'),
tr = un.addVariant('T'.charCodeAt(0), lo.const(true), 'b'),
fa = un.addVariant('F'.charCodeAt(0), lo.const(false), 'b'),
b = new Buffer(1+6);
un.configGetSourceVariant(function (src) {
if (src.hasOwnProperty('b')) {
return src.b ? tr : fa;
}
return this.defaultGetSourceVariant(src);
});
And here are examples of encoding, checking the encoded length, and decoding each of the alternatives:
b.fill(0xff);
un.encode({u8: 1}, b);
assert.equal(un.getSpan(b), 2);
assert.equal(Buffer('4201ffffffffff', 'hex').compare(b), 0);
assert.equal(un.decode(b).u8, 1);
b.fill(0xff);
un.encode({s16: -32000}, b);
assert.equal(un.getSpan(b), 3);
assert.equal(Buffer('680083ffffffff', 'hex').compare(b), 0);
assert.equal(un.decode(b).s16, -32000);
b.fill(0xff);
var v48 = Math.pow(2, 47) - 1;
un.encode({s48: v48}, b);
assert.equal(un.getSpan(b), 7);
assert.equal(Buffer('51ffffffffff7f', 'hex').compare(b), 0);
assert.equal(un.decode(b).s48, v48);
b.fill(0xff);
un.encode({b: true}, b);
assert.equal(un.getSpan(b), 1);
assert.equal(Buffer('54ffffffffffff', 'hex').compare(b), 0);
assert.strictEqual(un.decode(b).b, true);
b.fill(0xff);
un.encode({b: false}, b);
assert.equal(un.getSpan(b), 1);
assert.equal(Buffer('46ffffffffffff', 'hex').compare(b), 0);
assert.strictEqual(un.decode(b).b, false);
NOTE This code tickles a long-standing bug in
Buffer.writeInt{L,B}E. buffer-layout
patches Buffer
to fix the bug if it detects that the running Node has
has the error.