JSPM

  • ESM via JSPM
  • ES Module Entrypoint
  • Export Map
  • Keywords
  • License
  • Repository URL
  • TypeScript Types
  • README
  • Created
  • Published
  • Downloads 44
  • Score
    100M100P100Q64177F
  • License Apache-2.0

Superfast, lightweight and read-write optimized full text search library.

Package Exports

  • bulksearch

This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (bulksearch) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.

Readme

BulkSearch

Superfast, lightweight and read-write optimized full text search library.

When it comes to the overall speed, BulkSearch outperforms every searching library out there and also provides flexible search capabilities like multi-word, phonetics or partial matching. Adding, updating or removing items are also fast as searching them. When your index don't needs to be updated continuously then FlexSearch may be a better choice. BulkSearch also provides you a asynchronous processing model to perform any updates on the index in background.

Benchmark: https://jsperf.com/bulksearch

All Features:

  • Partial Words
  • Multiple Words
  • Flexible Word Order
  • Phonetic Search
  • Limit Results
  • Caching
  • Asynchronous Mode
  • Custom Matchers
  • Custom Encoders

Installation

Node.js
npm install bulksearch

In your code include as follows:

var BulkSearch = require("BulkSearch");
HTML / Javascript
<html>
<head>
    <script src="https://cdn.rawgit.com/nextapps-de/bulksearch/master/bulksearch.min.js"></script>
</head>
...

AMD

var BulkSearch = require("BulkSearch");

Usage (API)

Create a new index

var index = new BulkSearch();

alternatively you can also use:

var index = BulkSearch.create();
Create a new index with custom options

BulkSearch.create(options)

var index = new BulkSearch({

    // default values:

    type: "integer",
    encode: "icase",
    boolean: "and",
    size: 4000,
    depth: 3,
    multi: false,
    strict: false,
    ordered: false,
    async: false,
    cache: false
});

Read more: Phonetic Search, Phonetic Comparison, Improve Memory Usage

Add items to an index

Index.add_(id, string)

index.add(10025, "John Doe");

Search items

Index.search(string, limit, callback)

index.search("John");
Limit the result
index.search("John", 10);
Perform queries asynchronously
index.search("John", function(result){
    
    // array of results
});

Update item to the index

Index.update(id, string)

index.update(10025, "Road Runner");

Remove item to the index

Index.remove(id)

index.remove(10025);

Destroy the index

index.destroy();

Initialize the index

Index.init(options)

index.init();

Add custom matcher

Index.addMatcher(KEY_VALUE_PAIRS)

index.addMatcher({

    'ä': 'a', // replaces all 'ä' to 'a'
    'ö': 'o',
    'Ü': 'u'
});

Add custom encoder

var index = new BulkSearch({

    encode: function(str){
    
        // do something with str ...
        
        return str;
    }
});

Get info

index.info();

Returns information about the index, e.g.:

{
    "bytes": 3600356288,
    "chunks": 9,
    "fragmentation": 0,
    "fragments": 0,
    "id": 0,
    "length": 7798,
    "matchers": 0,
    "size": 10000,
    "status": false
}

Note: When the fragmentation value is about 50% or higher, your should consider using cleanup() to free all fragmented available memory.

Optimize / Cleanup index

index.cleanup();

Options

Option Values Description
type "byte"
"short"
"integer"
"float"
"string"
The data type of passed IDs has to be specified on creation. It is recommended to uses to most lowest possible data range here, e.g. use "short" when IDs are not higher than 65,535.
encode false
"icase"
"simple"
"advanced"
"extra"
{function}
The encoding type. Choose one of the built-ins or pass a custom encoding function.
boolean "and"
"or"
The applied boolean model when comparing multiple words. Note: When using "or" the first word is also compared with "and". Example: a query with 3 words, results has either: matched word 1 & 2 and matched word 1 & 3.
size 2500 - 10000 The size of chunks. It depends on content length which value fits best. Short content length (e.g. User names) are faster with a chunk size of 2,500. Bigger text runs faster with a chunk size of 10,000. Note: It is recommended to use a minimum chunk size of the maximum content length which has to be indexed to prevent fragmentation.
depth 0 - 6 Set the depth of register. It is recommended to use a value in relation to the number of stored index and content length for an optimum performance-memory value. Note: Increase this options carefully!
multi true
false
Enable multi word processing.
ordered true
false
Multiple words has to be the same order as the matched entry.
strict true
false
Matches exactly needs to be started with the query.
cache true
false
Enable caching.

Phonetic Encoding

Option Description Example False Positives Compression Level
false Turn off encoding Reference: "Björn-Phillipp Mayer"
Matches: "Phil"
no no
icase Case in-sensitive encoding Reference: "Björn-Phillipp Mayer"
Matches: "phil"
no no
simple Phonetic normalizations Reference: "Björn-Phillipp Mayer"
Matches: "bjoern fillip"
no ~ 3%
advanced Phonetic normalizations + Literal transformations Reference: "Björn-Phillipp Mayer"
Matches: "filip meier"
no ~ 25%
extra Phonetic normalizations + Soundex transformations Reference: "Björn-Phillipp Mayer"
Matches: "byorn mair"
yes ~ 50%

Compare Phonetic Search Results

Reference String: "Björn-Phillipp Mayer"

Query ElasticSearch BulkSearch (iCase) BulkSearch (Simple) BulkSearch (Adv.) BulkSearch (Extra)
björn yes yes yes yes yes
björ no yes yes yes yes
bjorn no no yes yes yes
bjoern no no no yes yes
philipp no no no yes yes
filip no no no yes yes
björnphillip no no yes yes yes
meier no no no yes yes
björn meier no no no yes yes
meier fhilip no no no yes yes
byorn mair no no no no yes
(false positives) yes no no no yes

Compare Memory Usage

Note: The data type of passed IDs has to be specified on creation. It is recommended to uses to most lowest possible data range here, e.g. use "short" when IDs are not higher than 65,535.

ID Type Range of Values Memory usage of every ~ 100,000 indexed words (Index + Content)
Byte 0 - 255 683 kb + 2.4 Mb
Short 0 - 65,535 1.3 Mb + 2.4 Mb
Integer 0 - 4,294,967,295 2.7 Mb + 2.4 Mb
Float 0 - * (16 digits) 5.3 Mb + 2.4 Mb
String * (unlimited) 1.3 Mb * char length of IDs + 2.4 Mb

Author BulkSearch: Thomas Wilkerling
License: Apache 2.0 License