Package Exports
- bulksearch
This package does not declare an exports field, so the exports above have been automatically detected and optimized by JSPM instead. If any package subpath is missing, it is recommended to post an issue to the original package (bulksearch) to support the "exports" field. If that is not possible, create a JSPM override to customize the exports field for this package.
Readme
BulkSearch
Superfast, lightweight and read-write optimized full text search library.
When it comes to the overall speed, BulkSearch outperforms every searching library out there and also provides flexible search capabilities like multi-word, phonetics or partial matching. Adding, updating or removing items are also fast as searching them. When your index don't needs to be updated continuously then FlexSearch may be a better choice. BulkSearch also provides you a asynchronous processing model to perform any updates on the index in background.
Benchmark: https://jsperf.com/bulksearch
All Features:
- Partial Words
- Multiple Words
- Flexible Word Order
- Phonetic Search
- Limit Results
- Caching
- Asynchronous Mode
- Custom Matchers
- Custom Encoders
Installation
Node.js
npm install bulksearch
In your code include as follows:
var BulkSearch = require("BulkSearch");
HTML / Javascript
<html>
<head>
<script src="https://cdn.rawgit.com/nextapps-de/bulksearch/master/bulksearch.min.js"></script>
</head>
...
AMD
var BulkSearch = require("BulkSearch");
Usage (API)
Create a new index
var index = new BulkSearch();
alternatively you can also use:
var index = BulkSearch.create();
Create a new index with custom options
BulkSearch.create(options)
var index = new BulkSearch({
// default values:
type: "integer",
encode: "icase",
boolean: "and",
size: 4000,
depth: 3,
multi: false,
strict: false,
ordered: false,
async: false,
cache: false
});
Read more: Phonetic Search, Phonetic Comparison, Improve Memory Usage
Add items to an index
Index.add_(id, string)
index.add(10025, "John Doe");
Search items
Index.search(string, limit, callback)
index.search("John");
Limit the result
index.search("John", 10);
Perform queries asynchronously
index.search("John", function(result){
// array of results
});
Update item to the index
Index.update(id, string)
index.update(10025, "Road Runner");
Remove item to the index
Index.remove(id)
index.remove(10025);
Destroy the index
index.destroy();
Initialize the index
Index.init(options)
index.init();
Add custom matcher
Index.addMatcher(KEY_VALUE_PAIRS)
index.addMatcher({
'ä': 'a', // replaces all 'ä' to 'a'
'ö': 'o',
'Ü': 'u'
});
Add custom encoder
var index = new BulkSearch({
encode: function(str){
// do something with str ...
return str;
}
});
Get info
index.info();
Returns information about the index, e.g.:
{
"bytes": 3600356288,
"chunks": 9,
"fragmentation": 0,
"fragments": 0,
"id": 0,
"length": 7798,
"matchers": 0,
"size": 10000,
"status": false
}
Note: When the fragmentation value is about 50% or higher, your should consider using cleanup() to free all fragmented available memory.
Optimize / Cleanup index
index.cleanup();
Options
Option | Values | Description |
---|---|---|
type |
"byte" "short" "integer" "float" "string" |
The data type of passed IDs has to be specified on creation. It is recommended to uses to most lowest possible data range here, e.g. use "short" when IDs are not higher than 65,535. |
encode |
false "icase" "simple" "advanced" "extra" {function} |
The encoding type. Choose one of the built-ins or pass a custom encoding function. |
boolean |
"and" "or" |
The applied boolean model when comparing multiple words. Note: When using "or" the first word is also compared with "and". Example: a query with 3 words, results has either: matched word 1 & 2 and matched word 1 & 3. |
size | 2500 - 10000 | The size of chunks. It depends on content length which value fits best. Short content length (e.g. User names) are faster with a chunk size of 2,500. Bigger text runs faster with a chunk size of 10,000. Note: It is recommended to use a minimum chunk size of the maximum content length which has to be indexed to prevent fragmentation. |
depth | 0 - 6 | Set the depth of register. It is recommended to use a value in relation to the number of stored index and content length for an optimum performance-memory value. Note: Increase this options carefully! |
multi |
true false |
Enable multi word processing. |
ordered |
true false |
Multiple words has to be the same order as the matched entry. |
strict |
true false |
Matches exactly needs to be started with the query. |
cache |
true false |
Enable caching. |
Phonetic Encoding
Option | Description | Example | False Positives | Compression Level |
---|---|---|---|---|
false | Turn off encoding |
Reference: "Björn-Phillipp Mayer" Matches: "Phil" |
no | no |
icase | Case in-sensitive encoding |
Reference: "Björn-Phillipp Mayer" Matches: "phil" |
no | no |
simple | Phonetic normalizations |
Reference: "Björn-Phillipp Mayer" Matches: "bjoern fillip" |
no | ~ 3% |
advanced | Phonetic normalizations + Literal transformations |
Reference: "Björn-Phillipp Mayer" Matches: "filip meier" |
no | ~ 25% |
extra | Phonetic normalizations + Soundex transformations |
Reference: "Björn-Phillipp Mayer" Matches: "byorn mair" |
yes | ~ 50% |
Compare Phonetic Search Results
Reference String: "Björn-Phillipp Mayer"
Query | ElasticSearch | BulkSearch (iCase) | BulkSearch (Simple) | BulkSearch (Adv.) | BulkSearch (Extra) |
---|---|---|---|---|---|
björn | yes | yes | yes | yes | yes |
björ | no | yes | yes | yes | yes |
bjorn | no | no | yes | yes | yes |
bjoern | no | no | no | yes | yes |
philipp | no | no | no | yes | yes |
filip | no | no | no | yes | yes |
björnphillip | no | no | yes | yes | yes |
meier | no | no | no | yes | yes |
björn meier | no | no | no | yes | yes |
meier fhilip | no | no | no | yes | yes |
byorn mair | no | no | no | no | yes |
(false positives) | yes | no | no | no | yes |
Compare Memory Usage
Note: The data type of passed IDs has to be specified on creation. It is recommended to uses to most lowest possible data range here, e.g. use "short" when IDs are not higher than 65,535.
ID Type | Range of Values | Memory usage of every ~ 100,000 indexed words (Index + Content) |
---|---|---|
Byte | 0 - 255 | 683 kb + 2.4 Mb |
Short | 0 - 65,535 | 1.3 Mb + 2.4 Mb |
Integer | 0 - 4,294,967,295 | 2.7 Mb + 2.4 Mb |
Float | 0 - * (16 digits) | 5.3 Mb + 2.4 Mb |
String | * (unlimited) | 1.3 Mb * char length of IDs + 2.4 Mb |
Author BulkSearch: Thomas Wilkerling
License: Apache 2.0 License